scholarly journals Fan design assessment for BLI propulsion systems

Author(s):  
M. Mennicken ◽  
D. Schoenweitz ◽  
M. Schnoes ◽  
R. Schnell

AbstractCivil aviation is aiming at fuel efficient aircraft concepts. Propulsion systems using boundary layer ingestion (BLI) are promising to reach this goal. The focus of this study is on the DLR UHBR fan stage of a tube and wing aircraft with rear-integrated engines. In this integration scenario the propulsion system and especially the fan stage receives distorted inflow in steady-state flight conditions. The distortion pattern and distortion intensity are dependent on the operating conditions. Consequently, the interaction of the fan and the distortion changes over the flight envelope. The first part of the paper aims at gaining knowledge of the BLI fan performance in the operating points end of field, approach, cruise (CR) and top of climb (TOC) using high-fidelity, unsteady RANS approaches. The analysis includes fan map performance metrics and a deeper insight into the flow field at CR and TOC. The preliminary design of a fan stage requires fast turn-around times, which are not fulfilled by high-fidelity approaches. Therefore, a fast, throughflow-based methodology is developed, which enables aerodynamicists to design distortion-tolerant fans. The main characteristics of the methodology is outlined in the second part. Consequently, the methodology is taken advantage of to investigate parameter sensitivities in terms of tip speed, blade thickness, solidity, the annulus geometry and a non-axisymmetric stator. This study suggests that distortion-tolerant fans should be designed at higher tip speeds than conventional design experience recommends to limit the local operating point excursion.

Author(s):  
Lorenzo Pinelli ◽  
Francesco Poli ◽  
Andrea Arnone ◽  
Sébastien Guérin ◽  
Axel Holewa ◽  
...  

Within the European research project RECORD (Research on Core Noise Reduction) the tone noise emissions of a high-pressure turbine stage have been numerically evaluated by six different academic and industrial partners. The turbine stage geometry and operating conditions match an HPT test rig located at Politecnico di Milano (Italy). Since the constant demand for quieter and greener propulsion systems has led to the development of several numerical aeroacoustic codes, this common benchmark represents an important chance to compare the performance of each approach. In this paper, the tone noise results of three distinct categories of numerical solvers (unsteady RANS, harmonic balance and time-linearized approaches) are compared. For the tone noise simulations, all the partners used non-reflecting boundary conditions at the domain inlet and outlet in order to avoid spurious reflections. Moreover, the acoustic modeshapes in the turbine duct were evaluated with different level of complexity by the various partners and different post-processing techniques were employed to extract the acoustic waves from the unsteady solutions. The result comparisons for the blade passing frequency have shown a good agreement (within 4 dB) among the partners in terms of PWL values. Also the acoustic eigenmodes (radial shapes of the pressure waves) and the eigenvalues (axial wave numbers) agree well among the different simulations. A wide range of acoustic results are presented and discussed in the paper.


2018 ◽  
Vol 17 (1) ◽  
pp. 160940691879160 ◽  
Author(s):  
Andrew Stuart Lane ◽  
Chris Roberts

The interview is an important data-gathering tool in qualitative research, since it allows researchers to gain insight into a person’s knowledge, understandings, perceptions, interpretations, and experiences. There are many definitions of reflexivity in qualitative research, one such definition being “Reflexivity is an attitude of attending systematically to the context of knowledge construction, especially to the effect of the researcher, at every step of the research processes.” The learning pathways grid (LPG) is a visual template used to assist analysis and interpretation of conversations, allowing educators, learners, and researchers, to discover links from cognition to action, usually in a retrospective manner. It is often used in simulation educational research, with a focus on understanding how learners access their cognitive frames and underlying beliefs. In this article, we describe the use of the LPG as a prospective adjunct to data collection for interviews and focus groups. We contextualize it within a study among medical interns and medical students who were engaged in high-fidelity simulation exploring open disclosure after a medication error. The LPG allowed future optimization of data collection and interpretation by ensuring reflexivity within the researchers, a vital part of research conduct. We conclude by suggesting the use of the LPG has a reasonable fit when taking a social constructivist approach and using qualitative analysis methods that make reflexivity explicit and visible, therefore ensuring it is truly considered, understood, and demonstrated by researchers.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Mirosław K. Szukiewicz ◽  
Krzysztof Kaczmarski

A dynamic model of the hydrogenation of benzene to cyclohexane reaction in a real-life industrial reactor is elaborated. Transformations of the model leading to satisfactory results are presented and discussed. Operating conditions accepted in the simulations are identical to those observed in the chemical plant. Under those conditions, some components of the reaction mixture vanish, and the diffusion coefficients of the components vary along the reactor (they are strongly concentration-dependent). We came up with a final reactor model predicting with reasonable accuracy the reaction mixture’s outlet composition and temperature profile throughout the process. Additionally, the model enables the anticipation of catalyst activity and the remaining deactivated catalyst lifetime. Conclusions concerning reactor operation conditions resulting from the simulations are presented as well. Since the model provides deep insight into the process of simulating, it allows us to make knowledge-based decisions. It should be pointed out that improvements in the process run, related to operating conditions, or catalyst application, or both on account of the high scale of the process and its expected growth, will remarkably influence both the profits and environmental protection.


2021 ◽  
Vol 11 (11) ◽  
pp. 4982
Author(s):  
Anahita Davoodi ◽  
Peter Johansson ◽  
Myriam Aries

Validation of the EBD-SIM (evidence-based design-simulation) framework, a conceptual framework developed to integrate the use of lighting simulation in the EBD process, suggested that EBD’s post-occupancy evaluation (POE) should be conducted more frequently. A follow-up field study was designed for subjective–objective results implementation in the EBD process using lighting simulation tools. In this real-time case study, the visual comfort of the occupants was evaluated. The visual comfort analysis data were collected via simulations and questionnaires for subjective visual comfort perceptions. The follow-up study, conducted in June, confirmed the results of the original study, conducted in October, but additionally found correlations with annual performance metrics. This study shows that, at least for the variables related to daylight, a POE needs to be conducted at different times of the year to obtain a more comprehensive insight into the users’ perception of the lit environment.


2016 ◽  
Vol 23 (1) ◽  
pp. 137-149 ◽  
Author(s):  
Chang-Yong YI ◽  
Han-Seong GWAK ◽  
Dong-Eun LEE

Low carbon construction is an important operation management goal because greenhouse gas (GHG) reduc­tion has become a global concern. Major construction resources that contribute GHG, such as equipment and labour, are being targeted to achieve this goal. The GHG emissions produced by the resources vary with their operating conditions. It is commendable to provide a statistical GHG emission estimation method that models the transitory nature of resource states at micro-scale of construction operations. This paper proposes a computational method called Stochastic Carbon Emission Estimation (SCE2) that measures the variability of GHG emissions. It creates construction operation models consisting of atomic work tasks, utilizes hourly equipment fuel consumption and hourly labourer respiratory rates that change according to their operating conditions classified into five categories, and identifies an optimal resource combi­nation by trading off eco-economic performance metrics such as the amount of GHG emissions, operation completion time, operation completion cost, and productivity. The study is of value to researchers because SCE2 fill in a gap to eco-economic operation modelling and analysis tool which considers operating conditions at micro-scale of construction operation having many stochastic work tasks. This study is also relevance to practitioners because it allows project man­agers to achieve eco-economic goals while honouring predefined constraints associated with time and cost.


Author(s):  
Andrea Milli ◽  
Olivier Bron

The present paper deals with the redesign of cyclic variation of a set of fan outlet guide vanes by means of high-fidelity full-annulus CFD. The necessity for the aerodynamic redesign originated from a change to the original project requirement, when the customer requested an increase in specific thrust above the original engine specification. The main objectives of this paper are: 1) make use of 3D CFD simulations to accurately model the flow field and identify high-loss regions; 2) elaborate an effective optimisation strategy using engineering judgement in order to define realistic objectives, constraints and design variables; 3) emphasise the importance of parametric geometry modelling and meshing for automatic design optimisation of complex turbomachinery configurations; 4) illustrate that the combination of advanced optimisation algorithms and aerodynamic expertise can lead to successful optimisations of complex turbomachinery components within practical time and costs constrains. The current design optimisation exercise was carried out using an in-house set of software tools to mesh, resolve, analyse and optimise turbomachinery components by means of Reynolds-averaged Navier-Stokes simulations. The original configuration was analysed using the 3D CFD model and thereafter assessed against experimental data and flow visualisations. The main objective of this phase was to acquire a deep insight of the aerodynamics and the loss mechanisms. This was important to appropriately limit the design scope and to drive the optimisation in the desirable direction with a limited number of design variables. A mesh sensitivity study was performed in order to minimise computational costs. Partially converged CFD solutions with restart and response surface models were used to speed up the optimisation loop. Finally, the single-point optimised circumferential stagger pattern was manually adjusted to increase the robustness of the design at other flight operating conditions. Overall, the optimisation resulted in a major loss reduction and increased operating range. Most important, it provided the project with an alternative and improved design within the time schedule requested and demonstrated that CFD tools can be used effectively not only for the analysis but also to provide new design solutions as a matter of routine even for very complex geometry configurations.


2021 ◽  
Author(s):  
Oliver Sjögren ◽  
Carlos Xisto ◽  
Tomas Grönstedt

Abstract The aim of this study is to explore the possibility of matching a cycle performance model to public data on a state-of-the-art commercial aircraft engine (GEnx-1B). The study is focused on obtaining valuable information on figure of merits for the technology level of the low-pressure system and associated uncertainties. It is therefore directed more specifically towards the fan and low-pressure turbine efficiencies, the Mach number at the fan-face, the distribution of power between the core and the bypass stream as well as the fan pressure ratio. Available cycle performance data have been extracted from the engine emission databank provided by the International Civil Aviation Organization (ICAO), type certificate datasheets from the European Union Aviation Safety Agency (EASA) and the Federal Aviation Administration (FAA), as well as publicly available data from engine manufacturer. Uncertainties in the available source data are estimated and randomly sampled to generate inputs for a model matching procedure. The results show that fuel performance can be estimated with some degree of confidence. However, the study also indicates that a high degree of uncertainty is expected in the prediction of key low-pressure system performance metrics, when relying solely on publicly available data. This outcome highlights the importance of statistic-based methods as a support tool for the inverse design procedures. It also provides a better understanding on the limitations of conventional thermodynamic matching procedures, and the need to complement with methods that take into account conceptual design, cost and fuel burn.


Author(s):  
Piotr Łuczyński ◽  
Dennis Toebben ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Klaus Helbig

In recent decades, the rising share of commonly subsidized renewable energy especially affects the operational strategy of conventional power plants. In pursuit of flexibility improvements, extension of life cycle, in addition to a reduction in start-up time, General Electric has developed a product to warm-keep high/intermediate pressure steam turbines using hot air. In order to optimize the warm-keeping operation and to gain knowledge about the dominant heat transfer phenomena and flow structures, detailed numerical investigations are required. Considering specific warm-keeping operating conditions characterized by high turbulent flows, it is required to conduct calculations based on time-consuming unsteady conjugate heat transfer (CHT) simulations. In order to investigate the warm-keeping process as found in the presented research, single and multistage numerical turbine models were developed. Furthermore, an innovative calculation approach called the Equalized Timescales Method (ET) was applied for the modeling of unsteady conjugate heat transfer (CHT). The unsteady approach improves the accuracy of the stationary simulations and enables the determination of the multistage turbine models. In the course of the research, two particular input variables of the ET approach — speed up factor (SF) and time step (TS) — have been additionally investigated with regard to their high impact on the calculation time and the quality of the results. Using the ET method, the mass flow rate and the rotational speed were varied to generate a database of warm-keeping operating points. The main goal of this work is to provide a comprehensive knowledge of the flow field and heat transfer in a wide range of turbine warm-keeping operations and to characterize the flow patterns observed at these operating points. For varying values of flow coefficient and angle of incidence, the secondary flow phenomena change from well-known vortex systems occurring in design operation (such as passage, horseshoe and corner vortices) to effects typical for windage, like patterns of alternating vortices and strong backflows. Furthermore, the identified flow patterns have been compared to vortex systems described in cited literature and summarized in the so-called blade vortex diagram. The comparison of heat transfer in the form of charts showing the variation of the Nusselt-numbers with respect to changes in angle of incidence and flow coefficients at specific operating points is additionally provided.


Author(s):  
David Hemberger ◽  
Roberto De Santis ◽  
Dietmar Filsinger

As a means of meeting ever increasing emissions and fuel economy demands car manufacturers are using aggressive engine downsizing. To maintain the power output of the engine turbocharging is typically used. Compared to Mono scroll turbines, with a multi-entry system the individual volute sizing can be better matched to the single mass flow pulse from the engine cylinders. The exhaust pulse energy can be better utilised by the turbocharger turbine improving turbocharger response. Additionally the interaction of the engine exhaust pulses can be better avoided, improving the scavenging of the engine. Besides the thermodynamic advantages, the multi-entry turbine represents a challenge to the structural dynamic design of the turbine. A higher number of turbine wheel resonance points can be expected during operation. In addition, the increased use of exhaust pulse energy leads to a distinct accentuation of the blade vibration excitation. Using validated engine models, the interaction of the multi-entry turbine with the engine has been analyzed and various operating points, which may be critical for the blade vibration excitation, have been classified. These operating points deliver the input variables for unsteady computational flow dynamics (CFD) analyses. From these calculations unsteady blade forces were derived providing the necessary boundary conditions for the structural dynamic analyses by spatially and temporally high-resolved absolute pressures on the turbine surface. Goal of the investigation is to identify critical operating conditions. Important is also to investigate the effect of a scroll connection valve on blade excitation. The investigations utilize validated tools that were introduced and successfully applied to several turbine types in a series of publications over recent years. It can be stated that the engine operating condition and the admission type significantly influence the forced response reaction of the blade to the different excitation orders (EO). In case of equal admission even (or multiples of two) EOs generate the largest dynamic blade stress as can be expected due to the two turbine inlet segments. This reaction also increases with the engine speed. In the case of unequal admission, the odd EOs produce the largest forced response reaction. The maximum dynamic blade stress occurs in the region where the scroll connection is just closed. Above all, the scroll connection valve influences the Beta value and thus the basic behavior — unequal or equal admission. It has been possible to reconstruct the forced response behavior of the turbine blade within an engine combustion cycle. For the first time it could be shown for a double scroll application that there is a significant dynamic blade stress change dependent on the engine crankshaft angle. Certainly, due to the inertia of the mass and damping (mass, structure, flow), the blade will not exactly follow the predicted course. However, it is clear that the transient processes within an engine combustion cycle will affect the dynamic blade stress. This applies to the turbine wheels investigated in the work at hand with low damping, high eigenfrequencies and the considered internal combustion engines — as they are typically used in the passenger car sector.


Author(s):  
Peter Gloeckner ◽  
Klaus Dullenkopf ◽  
Michael Flouros

Operating conditions in high speed mainshaft ball bearings applied in new aircraft propulsion systems require enhanced bearing designs and materials. Rotational speeds, loads, demands on higher thrust capability, and reliability have increased continuously over the last years. A consequence of these increasing operating conditions are increased bearing temperatures. A state of the art jet engine high speed ball bearing has been modified with an oil channel in the outer diameter of the bearing. This oil channel provides direct cooling of the outer ring. Rig testing under typical flight conditions has been performed to investigate the cooling efficiency of the outer ring oil channel. In this paper the experimental results including bearing temperature distribution, power dissipation, bearing oil pumping and the impact on oil mass and parasitic power loss reduction are presented.


Sign in / Sign up

Export Citation Format

Share Document