scholarly journals Secondary metabolites, antibacterial and antioxidant properties of the leaf extracts of Acacia rigidula benth. and Acacia berlandieri benth.

2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Peter Cavazos ◽  
David Gonzalez ◽  
Jocelyn Lanorio ◽  
Ruby Ynalvez

AbstractThe use of plants as sources for novel antimicrobial as well as antioxidant agents offers advantages. Plants are readily accessible and inexpensive, extracts or compounds from plant sources often demonstrate high level of biological activities. Previous studies have reported antibacterial and antifungal activities within the Fabaceae family that included Acacia species. This study aims to determine presence of antibacterial activity, antioxidant activity, and the secondary metabolites of sequential solvent extracts (acetone, methanol, and acetic acid) of Acacia berlandieri and Acacia rigidula leaves. The antibacterial activity was investigated using a disc diffusion assay. The ferric thiocyanate method was used to assess the ability of all extracts to prevent oxidation. Qualitative phytochemical tests, NMR, IR, and UV–Vis spectroscopy were done to identify potential secondary metabolites. P. alcalifaciens (p < 0.001), E. faecalis (p < 0.01), S. aureus (p < 0.001), and Y. enterocolitica (p < 0.001) were significantly inhibited by A. rigidula extracts when compared to A. berlandieri extracts. A. rigidula’s acetone extract exhibited the significantly (p < 0.001) highest inhibition of peroxidation, 42%. Qualitative phytochemical tests showed positive results for presence of phenols, flavonoids, saponins, terpenes and tannins. NMR, IR, and UV–Vis spectroscopy revealed chemical structures found in flavonoids, saponins, terpenes and tannins, supporting the results of qualitative phytochemical tests. A. berlandieri and A. rigidula leaf extracts have revealed presence of medicinally valued bioactive components. The results of this study provide a basis for further investigations of the A. rigidula leaf extracts. A. rigidula leaf extracts have the potential to serve as a source of novel antimicrobial and antioxidant agents. Graphic abstract

2018 ◽  
Vol 46 (2) ◽  
pp. 517-524
Author(s):  
Kandhan KARTHISHWARAN ◽  
Subban KAMALRAJ ◽  
Chelliah JAYABASKARAN ◽  
Shyam S. KURUP ◽  
Sabitha SAKKIR ◽  
...  

Aerva javanica (Burm. f) Juss. ex Schult. (Family: Amaranthaceae) family is one of the traditional medicinal plant growing in the United Arab Emirates. Apart from studies related to some medicinal properties, phytochemical, GC MS compound characterization and biological activities still to be investigated. An experiment was conducted to determine the possible bioactive components with their chemical structures and elucidation of phytochemicals from the aerial parts of the plant. The macro and micro-mineral constituents and antioxidant activities were also evaluated. Aerial parts of A. javanica were extracted sequentially with hexane, chloroform, ethyl acetate, acetone, methanol by cold percolation method. Free radical scavenging and antioxidant properties of methanolic extract were evaluated by using in vitro antioxidant assays such as hydroxyl radical scavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, superoxide radical scavenging activity and ABTS radical scavenging activity. Primary phytochemical and micro-macro element was tested using standard protocol. The chemical characterization was done with the help of Gas Chromatography-Mass Spectrometry (GC–MS), and the mass spectra of the total compounds in the extract were matched with the National Institute of Standard and Technology (NIST) library. Mineral constituents were identified and estimated by ICP-OES. Ninety-nine metabolites were obtained by GC-MS anslysis; indole was found to be major components followed by 2-Chlorallyl diethyldithiocarbamate (CDEC), Carbaril, Bis(2-ethylhexyl) phthalate, Quinoline, 4H-Cyclopenta[def]phenanthrene,2-[Bis(2-chloroethylamino)]-tetrahydro-2H-1,3,2-oxazaphosphorine-2-oxide, Phenobarbital, 1H-Indole, 2-methyl-, 2,3,7,8-Tetrachlorodibenzo-p-dioxin Disulfide, diphenyl. The presence of various bioactive compounds in the extract validates the traditional medicinal uses of this plant.


2007 ◽  
Vol 2 (6) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Liva Harinantenaina ◽  
Yoshinori Asakawa

The phytochemical investigation of eight Jungermaniales liverwort species: Bazzania decrescens, B. madagassa (Lepidoziaceae), Plagiochila barteri, P. terebrans (Plagiochilaceae), Isotachis aubertii (Isotachidaceae), Mastigophora diclados (Lepicoleaceae), Radula appressa (Radulaceae), and Thysananthus spathulistipus (Lejeuneaceae), collected from Madagascar, has been carried out to afford new and structurally interesting terpenoids and aromatic compounds. The biological activities of the isolated secondary metabolites were determined and the herbertene-type sesquiterpenoids were shown to have antibacterial activity. A new ent-clerodane diterpene from Thysananthus spathulistipus and bis-bibenzyls-type aromatic compounds exhibited strong inhibition of NO production in RAW 264.7 cells, while marchantin C produced moderate α-glucosidase inhibition. The chemosystematics of the studied species are discussed.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 129
Author(s):  
Dario Matulja ◽  
Maria Kolympadi Markovic ◽  
Gabriela Ambrožić ◽  
Sylvain Laclef ◽  
Sandra Kraljević Pavelić ◽  
...  

Gorgonian corals, which belong to the genus Eunicella, are known as natural sources of diverse compounds with unique structural characteristics and interesting bioactivities both in vitro and in vivo. This review is focused primarily on the secondary metabolites isolated from various Eunicella species. The chemical structures of 64 compounds were divided into three main groups and comprehensively presented: a) terpenoids, b) sterols, and c) alkaloids and nucleosides. The observed biological activities of depicted metabolites with an impact on cytotoxic, anti-inflammatory, and antimicrobial activities were reviewed. The most promising biological activities of certain metabolites point to potential candidates for further development in pharmaceutical, cosmetic, and other industries, and are highlighted. Total synthesis or the synthetic approaches towards the desired skeletons or natural products are also summarized.


Author(s):  
Sanrda Kim Tiam ◽  
Muriel Gugger ◽  
Justine Demay ◽  
Severine Le Manach ◽  
Charlotte Duval ◽  
...  

Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with diverse chemical structures and potent biological activities and toxicities. The chemical identification of these compounds remains a major bottleneck. Strategies that can prioritize the most prolific strains and novel compounds are of great interest. Here, we combine chemical analysis and genomics to investigate the chemodiversity of secondary metabolites based on their pattern of distribution within some cyanobacteria. Planktothrix being a cyanobacterial genus known to form blooms worldwide and to produce a broad spectrum of toxins and other bioactive compounds, we applied this combined approach on four closely related strains of Planktothrix. The chemical diversity of the metabolites produced by the four strains was evaluated using an untargeted metabolomics strategy with high-resolution LC-MS. Metabolite profiles were correlated with the potential of metabolite production identified by genomics for the different strains. Although, the Planktothrix strains present a global similarity in term biosynthetic cluster gene for microcystin, aeruginosin and prenylagaramide for example, we found remarkable strain-specific chemo-diversity. Only few of the chemical features were common to the four studied strains. Additionally, the MS/MS data were analyzed using Global Natural Products Social Molecular Networking (GNPS) to identify molecular families of the same biosynthetic origin. In conclusion, we present an efficient integrative strategy for elucidating the chemical diversity of a given genus and link the data obtained from analytical chemistry to biosynthetic genes of cyanobacteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sephokoane Cindy Makuwa ◽  
Mahloro Hope Serepa-Dlamini

Endophytic bacteria isolated from medicinal plants are recognized valuable sources of novel bioactive compounds with various activities such as antimicrobial, anticancer, and antiviral. In this study, eleven bacterial endophytes were isolated from surface sterilized roots and leave tissues, of medicinal plant Dicoma anomala. The bacterial endophytes were identified by sequencing the 16S rRNA gene, and belong to five genera viz Bacillus, Staphylococcus, Stenotrophomonas, Enterobacter, and Pantoea. The dominant genera were Bacillus with five strains, Staphylococcus with two strains, and Stenotrophomonas with two strains. The crude extracts of seven selected bacterial endophytes indicated antimicrobial activity against five pathogenic strains Escherichia coli (ATCC 25922), Bacillus cereus (ATCC 10876), Staphylococcus aureus (NCTC 6571), Pseudomonas aeruginosa (ATCC 27853), and Klebsiella oxytoca (ATCC 13182), with significant inhibition concentration ranging from 0.312 mg/ml to 0.625 mg/ml. Finally, based on the data analysis of the crude extracts of the endophytes, we identified bioactive secondary metabolites with reported biological activities such as antimicrobial, anti-inflammatory, and antioxidant properties with biotechnological applications in medicine, agriculture, and other industries. This study reported for the first time bacterial endophytes associated with D. anomala, with antimicrobial activity against bacterial pathogens.


2021 ◽  
Vol 20 (2) ◽  
pp. 201-210
Author(s):  
Evana Evana ◽  
Kartika Dyah Palupi ◽  
Listiana Oktavia ◽  
Ahmad Fathoni

Macrofungi in Indonesia have not been widely studied for their pharmacological activity, especially as a source of antibacterial and antioxidant properties, even though Indonesia as a tropical country has quite a high diversity of macrofungi. This study aims to reveal the potential of macrofungi from the Enggano forest as a source of antibacterial and antioxidant compounds. Four types of macrofungi were collected and their metabolites were extracted using four types of organic solvents. Antibacterial and antioxidant activity assay of the extract was carried out using the TLC Bioautography method. From the sixteen macrofungal extracts, there is one extract that has the strongest antibacterial activity compared to the others, namely n-hexane Coriolopsis polyzona. It showed moderate antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 256–128 μg/mL, respectively. Meanwhile, the antioxidant activity of the macrofungal extracts showed weak activity with IC50 values of 3080–7370 μg/mL (AAI values of 0.033–0.079).


2021 ◽  
pp. 376-384
Author(s):  
Marlin Megalestin Raunsai ◽  
Kartika Dyah Palupi ◽  
Ahmad Fathoni ◽  
Andria Agusta

The discovery of new antibiotics to overcome the growing resistance problem as well as the discovery of new natural, safe antioxidants to combat oxidative stress are still urgently needed. Medicinal plants are known to produce potential therapeutic substances which are more biologically selective than synthetic compounds. Therefore, we explored the bioactivities of 35 ethanolic extracts from 24 underexplored plant species collected in Halmahera, to find potential sources for antibacterial and antioxidant agents.  Dried plant parts were extracted using ethanol 96%. Thin layer chromatography-direct-bioautography (TLC-DB) and minimum inhibitory concentration (MIC) determination were used to evaluate the antibacterial effect. Antioxidant activity was determined against DPPH using TLC-DB and microdilution assay. Total phenolic content (TPC) was determined using Folin-Ciocalteu’s method. The ethanolic extracts exhibited moderate to weak antibacterial activity against Escherichia coli and Staphylococcus aureus. However, the leaf extract of Elaeocarpus dolichostylus, Elaeocarpus multiflorus, and Psychotria celebica as well as the stem bark extract of Elaeocarpus dolichostylus, Cinnamomum sintoc, and Garcinia latissima displayed very strong antioxidant activities against DPPH with AAI values between 4.60 to 13.42. A strong correlation between TPC and antioxidant activity with r = 0.8712 was observed. Despite the moderate to weak antibacterial activity, eight underexplored plant species exhibit strong antioxidant activities. A high correlation between TPC and antioxidant activity indicating a prominent role of phenolic compounds in the plants’ antioxidant properties. These findings indicate that collected plants from Halmahera are potential to be studied and developed further as the potential sources for novel antioxidants.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (08) ◽  
pp. 79-83
Author(s):  
Maisa R. Shoriqi ◽  
Salem S. Touby ◽  
Mohammad A. Hossain ◽  

Nowadays, effective medications as antioxidant agents are mandatory for a safe and sustainable environment. Dodonaea viscosa (D. viscosa) is used traditionally by the Omani people to treat rheumatism, toothaches, fever, cold, malaria, headaches, indigestion, ulcers, diarrhea, and constipation, dysmenorrheal and irregular menstruation. This study was carried out to prepare leaf extracts by different solvents and to determine their antioxidant activity and total phenols content. The selected plant was collected locally near the University Campus, Nizwa, Oman. The dried coarse powder was used for the extraction with methanol and it was defatted with water and successively partitioned with different polarity solvents with increasing solvent polarity. The total phenols content and antioxidant activity of the prepared different extracts were assessed by Folin-Ciocalteu reagent (FCR) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) methods. The total phenols content of different extracts was in the range of 3.02-249.93 mg gallic acid/g dry extract. The chloroform extract showed the maximum amount of total phenol compounds (249.93 mg GAE acid/g dry extract) and the minimum content was found in water extract (3.02 mg GAE acid/g dry extract). The leaf crude extracts were obtained to significant levels of antioxidant activity that ranged from percentage of inhibition from 33-85.92 %. The water extract and n-butanol extracts showed significant levels of antioxidant activity (85.92 % and 84.99 %) against the DPPH free radical method. In conclusion, this study showed that different polarities crude extracts of D. viscosa comprise a significant amount of phenols plus antioxidant properties and have possibilities of being potential use of the selected species for a natural source of antioxidants.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3049 ◽  
Author(s):  
Elżbieta Łodyga-Chruścińska ◽  
Agnieszka Kowalska-Baron ◽  
Paulina Błazińska ◽  
Maria Pilo ◽  
Antonio Zucca ◽  
...  

Structure-related biological activities of flavanones are still considered largely unexplored. Since they exhibit various medicinal activities, it is intriguing to enter deeper into their chemical structures, electronic transitions or interactions with some biomolecules in order to find properties that allow us to better understand their effects. Little information is available on biological activity of flavanone and its monohydroxy derivatives in relation to their physicochemical properties as spectral profiles, existence of protonated/deprotonated species under pH changes or interaction with Calf Thymus DNA. We devoted this work to research demonstrating differences in the physicochemical properties of the four flavanones: flavanone, 2′-hydroxyflavanone, 6-hydroxyflavanone and 7-hydroxyflavanone and linking them to their biological activity. Potentiometric titration, UV–Vis spectroscopy were used to investigate influence of pH on acid–base and spectral profiles and to propose the mode of interaction with DNA. Cyclic voltammetry was applied to evaluate antioxidant potentiality and additionally, theoretical DFT(B3LYP) method to disclose electronic structure and properties of the compounds. Molecular geometries, proton affinities and pKa values have been determined. According to computational and cyclic voltammetry results we could predict higher antioxidant activity of 6-hydroxyflavanone with respect to other compounds. The values of Kb intrinsic binding constants of the flavanones indicated weak interactions with DNA. Structure–activity relationships observed for antioxidant activity and DNA interactions suggest that 6-hydroxyflavanone can protect DNA against oxidative damage most effectively than flavanone, 2′-hydroxyflavanone or 7-hydroxyflavanone.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 584
Author(s):  
Valentin A. Stonik ◽  
Alla A. Kicha ◽  
Timofey V. Malyarenko ◽  
Natalia V. Ivanchina

Asterosaponins are a class of steroid oligoglycosides isolated from starfish with characteristic structures and diverse biological activities. In this review, we have attempted to combine the most important data concerning asterosaponins and give a list of these secondary metabolites with their structural peculiarities. The purpose of this review is to provide a brief but as complete as possible principal information about their chemical structures, taxonomic distribution in the marine environment, distribution in different geographical areas and depths, some properties, biological activities, and functions. Some other rare steroid metabolites from starfish, closely related in structures and probably biogenesis to asterosaponins, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document