scholarly journals The anti-diabetic activities of natural sweetener plant Stevia: an updated review

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sohail Ahmad Jan ◽  
Neeli Habib ◽  
Zabta Khan Shinwari ◽  
Muhammad Ali ◽  
Nasir Ali

AbstractDiabetes mellitus is one of the key metabolic diseases cause due to defects in the secretion of insulin, insulin resistance in peripheral tissues, or both. Plants remained an important source of nutrition as well as medicine. Stevia rebaudiana Bertoni is one of the important high qualities non-caloric sugar substitute sweetener plants against diabetes disease. The compounds like steviol, rebaudioside A, stevioside, etc. can lower the sugar level many fold. In addition, it decreases oxidative stress, hence reduces the risk of diabetes. Its leaves have been used for the control and treatment of diabetes and many other metabolic diseases. In animal model experiments it reduces blood sugar level and promotes liver and kidney functions. In this review, we highlighted the most recent literature on the safe use of Stevia for the treatment of diabetes, its use as a functional food, and its mode of therapeutic action in different animal model experiments. However, keeping Stevia as a model plant; detailed investigations are needed for the identification of new metabolites and its use against diabetes and related diseases.

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 551 ◽  
Author(s):  
Eva M. Gómez del Pulgar ◽  
Alfonso Benítez-Páez ◽  
Yolanda Sanz

The formulation of next-generation probiotics requires competent preclinical studies to show their efficacy and safety status. This study aims to confirm the safety of the prolonged oral use of Bacteroides uniformis CECT 7771, a strain that protected against metabolic disorders and obesity in preclinical trials, in a sub-chronic 90 day trial in animals. The safety assessment was conducted in male and female Wistar rats (n = 50) administered increasing doses (108 CFU/day, 109 CFU/day, or 1010 CFU/day) of B. uniformis CECT 7771, 1010 CFU/day of B. longum ATCC 15707T, which complies with the qualifying presumption of safety (QPS) status of the EU, or vehicle (placebo), as the control. Pancreatic, liver, and kidney functions and cytokine concentrations were analyzed. Bacterial translocation to peripheral tissues was evaluated, and colon integrity was investigated histologically. No adverse metabolic or tissue integrity alterations were associated with treatments; however, alanine aminotransferase levels and the ratio of anti-inflammatory to pro-inflammatory cytokines in serum indicated a potentially beneficial role of B. uniformis CECT 7771 at specific doses. Additionally, the microbial community structure was modified by the interventions, and potentially beneficial gut bacteria were increased. The results indicated that the oral consumption of B. uniformis CECT 7771 during a sub-chronic 90 day study in rats did not raise safety concerns.


Author(s):  
Aleksandra Baska ◽  
Kamil Leis ◽  
Przemysław Gałązka

: Berberine is an alkaloid found in plants. It has e.g. neuroprotective, anti-inflammatory and hypolipidemic activity. The research proves that it also strongly impacts the carbohydrate metabolism. The compound also protects pancreatic βcells and increases sensitivity to insulin in peripheral tissues via the induction of GLUT-1, GLUT-4 and insulin type 1 (Ins1) receptors activity. It also stimulates glycolysis and leads to a decrease in insulin resistance by macrophages polarization, lipolytic processes induction and energy expenditure enhancement (by reducing body mass and limiting insulin resistance caused by obesity). In liver berberine inhibits FOX01, SREBP1 and ChREBP pathways, and HNF-4α (hepatocyte nuclear factor 4 alpha) mRNA that hinder gluconeogenesis processes. In intestines it blocks α-glucosidase contributing to glucose absorption decrease. Its interference in intestinal flora reduces levels of monosaccharides and suppresses diabetes mellitus complications development.


2020 ◽  
Author(s):  
Firdous Beigh ◽  
Nidda Syeed ◽  
Walaa Saeed ◽  
Ziab Alahmadey ◽  
Ibrahim Seedi

BACKGROUND Coronavirus disease (COVID-19) is a budding infectious disease that has affected various countries globally. OBJECTIVE The aim of this study was to analyze the effect of COVID-19 disease on liver and kidney functions and to determine their association with the severity and mortality of disease METHODS A total of 100 confirmed COVID-19 adult patients from Madinah city of Saudi Arabia hospitalized between April 28, and June 30, 2020 were included,and categorized into asymptomatic,mild to moderate and severely ill patients.We analyzed the clinical status of liver and renal functioning in all of the three groups. RESULTS The majority of patients (51%) were diagnosed with mild to moderate disease, 27% of patients were severely ill and 22% of patients were asymptomatic.The liver and renal functional analysis showed that the severity of the COVID-19 patients were significantly associated with the kidney and renal impairments exhibiting higher levels of ALT, AST, Creatinine, Urea levels (P < 0.05). Furthermore, in this study, a novel association is found between high Na and Cl levels with the severely ill COVID-19 patients. CONCLUSIONS We concluded from the present study that a significant percentage of COVID-19 patients continued to have a normal liver and renal function during the course of their disease. Nevertheless, severely ill COVID-19 patients were more prone to have abnormal liver and renal functions. During the course of treatment, the patients had a gradual normalization of their liver and kidney parameters and subsequently achieved a complete normal liver and renal functions upon discharge with no mortality.


2021 ◽  
pp. 101244
Author(s):  
Mahmoud Alagawany ◽  
Elwy Ali Ashour ◽  
Mohamed Soliman El-Kholy ◽  
Laila Ali Mohamed ◽  
Mohamed Ezzat Abd El-Hack

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1004
Author(s):  
Sonia Kiran ◽  
Vijay Kumar ◽  
Santosh Kumar ◽  
Robert L Price ◽  
Udai P. Singh

Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.


Author(s):  
Claire Laurens ◽  
Cedric Moro

AbstractOver the past decades, obesity and its metabolic co-morbidities such as type 2 diabetes (T2D) developed to reach an endemic scale. However, the mechanisms leading to the development of T2D are still poorly understood. One main predictor for T2D seems to be lipid accumulation in “non-adipose” tissues, best known as ectopic lipid storage. A growing body of data suggests that these lipids may play a role in impairing insulin action in metabolic tissues, such as liver and skeletal muscle. This review aims to discuss recent literature linking ectopic lipid storage and insulin resistance, with emphasis on lipid deposition in skeletal muscle. The link between skeletal muscle lipid content and insulin sensitivity, as well as the mechanisms of lipid-induced insulin resistance and potential therapeutic strategies to alleviate lipotoxic lipid pressure in skeletal muscle will be discussed.


2008 ◽  
Vol 294 (6) ◽  
pp. E1160-E1168 ◽  
Author(s):  
Elena Silvestri ◽  
Assunta Lombardi ◽  
Pieter de Lange ◽  
Luigi Schiavo ◽  
Antonia Lanni ◽  
...  

Aging is associated with changes in thyroid gland physiology. Age-related changes in the contribution of peripheral tissues to thyroid hormone serum levels have yet to be systematically assessed. Here, we investigated age-related alterations in the contributions of the liver and kidney to thyroid hormone homeostasis using 6-, 12-, and 24-mo-old male Wistar rats. A significant and progressive decline in plasma thyroxine occurred with age, but triiodothyronine (T3) was decreased only at 24 mo. This was associated with an unchanged protein level of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the kidney and with a decreased MCT8 level in the liver at 24 mo. Hepatic type I deiodinase (D1) protein level and activity declined progressively with age. Renal D1 levels were decreased at both 12 and 24 mo but D1 activity was decreased only at 24 mo. In the liver, no changes occurred in thyroid hormone receptor (TR) TRα1, whereas a progressive increase in TRβ1 occurred at both mRNA and total protein levels. In the kidney, both TRα1 and TRβ1 mRNA and total protein levels were unchanged between 6 and 12 mo but increased at 24 mo. Interestingly, nuclear TRβ1 levels were decreased in both liver and kidney at 12 and 24 mo, whereas nuclear TRα1 levels were unchanged. Collectively, our data show differential age-related changes among hepatic and renal MCT8 and D1 and TR expressions, and they suggest that renal D1 activity is maintained with age to compensate for the decrease in hepatic T3 production.


Author(s):  
Nahla S. EL Shenawy ◽  
Maha F. M. Soliman ◽  
Shimaa I. Reyad

The aim of this study was to assess the antioxidant and anti-schistosomal activities of the garlic extract (AGE) and Nigella sativa oil (NSO) on normal and Schistosoma mansoni-infected mice. AGE (125 mg kg-1, i.p.) and NSO (0.2 mg kg-1, i.p.) were administrated separately or in combination for successive 28 days, starting from the 1st day post infection (pi). All mice were sacrificed at weeks 7 pi. Hematological and biochemical parameters including liver and kidney functions were measured to assess the progress of anemia, and the possibility of the tissue damage. Serum total protein level, albumin, globulin and cholesterol were also determined. Malondialdehyde (MDA) and glutathione (GSH) levels were determined in the liver tissues as biomarkers for oxidative and reducing status, respectively. The possible effect of the treatment regimens on Schistosoma worms was evaluated by recording percentage of the recovered worms, tissue egg and oogram pattern. Result showed that, protection with AGE and NSO prevented most of the hematological and biochemical changes and markedly improved the antioxidant capacity of schistosomiasis mice compared to the infected-untreated ones. In addition, remarkable reduction in worms, tissue eggs and alteration in oogram pattern were recorded in all the treated groups. The antioxidant and antischistosomal action of AGE and NSO was greatly diverse according to treatment regimens. These data point to these compounds as promising agents to complement schistosomiasis specific treatment.


Sign in / Sign up

Export Citation Format

Share Document