Optimal system layout and locations for fully renewable high temperature co-electrolysis

2020 ◽  
Vol 260 ◽  
pp. 114218 ◽  
Author(s):  
Simon Morgenthaler ◽  
Wilhelm Kuckshinrichs ◽  
Dirk Witthaut
2013 ◽  
Author(s):  
Pauli Salminen ◽  
Esa Ahlgren ◽  
Petri Kuosmanen

Solid Oxide Fuel Cell (SOFC) systems achieve high electrical efficiency and can utilize many types of fuels such as methanol or biogas. These systems operate at high temperatures up to 600–1000 °C. Due to high temperatures, mechanical engineering must be combined with thermal engineering through the design work. System design for SOFC systems should take into account several functions such as mechanical support of components, thermal insulation, instrumentation, compensation for thermal expansion and heat recovery as well as conduction of gases through channels, piping or open cavities. One should note that many of these functions have strong interactions and cannot be designed without an effect on the system as a whole. When a system is designed to fulfill all the expectations, it will have a compact size, good thermal properties, small pressure losses and good overall performance together with a competitive price, long system lifetime and easy maintenance. This article aims to improve the mechanical structure of SOFC systems. In addition, our aim is to give sophisticated recommendations for a system design. To achieve this, we have used systematic concept development tools and methodologies to investigate the interactions and relative importance of system requirements and functions. Our key result from this study is that engineers must use a holistic approach when designing a high temperature system with strong interactions between system functions and components. Contrary to our former expectations, these systems could not be designed well by methods that are based on reductionism. In practice, this means that thermal engineering must be utilized from the very beginning. Thermal insulation concept should be selected during the first design steps since this has a great effect on system layout. Mechanical engineering is needed in system layout design in order to solve problems related to the thermal expansion and support of components. Combined thermal and structural analysis utilizing finite element methods can be used to develop or optimize mechanical key components and system layout. The best results can be achieved by using a holistic approach during the design process. In addition, it is beneficial to keep the system as simple and compact as possible. To achieve this, the integration of functions and components must be increased. Thus, SOFC system performance is greatly dependent on system design, not only of its components alone. Findings obtained from this study can be used by researchers designing experimental apparatuses or by companies manufacturing full scale SOFC systems.


Author(s):  
Andre Hildebrandt ◽  
Mohsen Assadi

This paper presents a sensitivity analysis of unsteady-state SOFC-GT-HS operation based on two different characteristic maps of centrifugal compressor taken from open literature and scaled by the law of similitude to match the design point of the Hybrid System. The system layout under investigation is a pressurised type comprising a low and high temperature recuperator. Computations are based on a one-dimensional finite element model of planar high temperature SOFC, which is validated against open literature. The reduced Moore and Greitzer model is used for compressor modelling. Calculation results of the coupled SOFC-GT-Hybrid System show that unsteady-state part-load operation is sensitive to the characteristics of compressor speed-lines but also to the load change operation procedure.


Author(s):  
Yigong Zhou

This paper analyses pros and cons for three high pressure high temperature CFB boiler superheater system layout plans, makes quantitative analysis, put forwards optimized plans for boiler superheater system layout, and summarizes design principle for platen-type superheater.


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Sign in / Sign up

Export Citation Format

Share Document