scholarly journals Identification of metabolomic profile related to adult Fontan pathophysiology

2021 ◽  
Vol 37 ◽  
pp. 100921
Author(s):  
Noriko Motoki ◽  
Hirohiko Motoki ◽  
Masafumi Utsumi ◽  
Shoko Yamazaki ◽  
Haruka Obinata ◽  
...  
Keyword(s):  
Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1337-P
Author(s):  
SIRIMON REUTRAKUL ◽  
NARICHA CHIRAKALWASAN ◽  
SURANUT CHAROENSRI ◽  
SOMVANG AMNAKKITTIKUL ◽  
SUNEE SAETUNG ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 414
Author(s):  
Didem Kart ◽  
Tuba Reçber ◽  
Emirhan Nemutlu ◽  
Meral Sagiroglu

Introduction: Alternative anti-biofilm agents are needed to combat Pseudomonas aeruginosa infections. The mechanisms behind these new agents also need to be revealed at a molecular level. Materials and methods: The anti-biofilm effects of 10 plant-derived compounds on P. aeruginosa biofilms were investigated using minimum biofilm eradication concentration (MBEC) and virulence assays. The effects of ciprofloxacin and compound combinations on P. aeruginosa in mono and triple biofilms were compared. A metabolomic approach and qRT-PCR were applied to the biofilms treated with ciprofloxacin in combination with baicalein, esculin hydrate, curcumin, and cinnamaldehyde at sub-minimal biofilm inhibitory concentration (MBIC) concentrations to highlight the specific metabolic shifts between the biofilms and to determine the quorum sensing gene expressions, respectively. Results: The combinations of ciprofloxacin with curcumin, baicalein, esculetin, and cinnamaldehyde showed more reduced MBICs than ciprofloxacin alone. The quorum sensing genes were downregulated in the presence of curcumin and cinnamaldehyde, while upregulated in the presence of baicalein and esculin hydrate rather than for ciprofloxacin alone. The combinations exhibited different killing effects on P. aeruginosa in mono and triple biofilms without affecting its virulence. The findings of the decreased metabolite levels related to pyrimidine and lipopolysaccharide synthesis and to down-regulated alginate and lasI expressions strongly indicate the role of multifactorial mechanisms for curcumin-mediated P. aeruginosa growth inhibition. Conclusions: The use of curcumin, baicalein, esculetin, and cinnamaldehyde with ciprofloxacin will help fight against P. aeruginosa biofilms. To the best of our knowledge, this is the first study of its kind to define the effect of plant-based compounds as possible anti-biofilm agents with low MBICs for the treatment of P. aeruginosa biofilms through metabolomic pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shukun Jiang ◽  
Guojie Liu ◽  
Huiya Yuan ◽  
Enyu Xu ◽  
Wei Xia ◽  
...  

AbstractTramadol is an opioid used as an analgesic for treating moderate or severe pain. The long-term use of tramadol can induce several adverse effects. The toxicological mechanism of tramadol abuse is unclear. Limited literature available indicates the change of proteomic profile after chronic exposure to tramadol. In this study, we analyzed the proteomic and metabolomic profile by TMT-labeled quantitative proteomics and untargeted metabolomics between the tramadol and the control group. Proteomic analysis revealed 31 differential expressed serum proteins (9 increased and 22 decreased) in tramadol-treated mice (oral, 50 mg/kg, 5 weeks) as compared with the control ones. Bioinformatics analysis showed that the dysregulated proteins mainly included: enzyme inhibitor-associated proteins (i.e. apolipoprotein C-III (Apoc-III), alpha-1-antitrypsin 1–2 (Serpina 1b), apolipoprotein C-II (Apoc-II), plasma protease C1 inhibitor, inter-alpha-trypsin inhibitor heavy chain H3 (itih3)); mitochondria-related proteins (i.e. 14-3-3 protein zeta/delta (YWHAZ)); cytoskeleton proteins (i.e. tubulin alpha-4A chain (TUBA4A), vinculin (Vcl)). And we found that the differential expressed proteins mainly involved in the pathway of the protein digestion and absorption. Metabolomics analysis revealed that differential expressed metabolites mainly involved in protein ingestion and absorption, fatty acid biosynthesis, steroid hormone biosynthesis and bile secretion. Our overall findings revealed that chronic exposure to tramadol changed the proteomic and metabolomic profile of mice. Moreover, integrated proteomic and metabolomic revealed that the protein digestion and absorption is the common enrichment KEGG pathway. Thus, the combination of proteomics and metabolomics opens new avenues for the research of the molecular mechanisms of tramadol toxicity.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2634
Author(s):  
Beatriz Soldevilla ◽  
Angeles López-López ◽  
Alberto Lens-Pardo ◽  
Carlos Carretero-Puche ◽  
Angeles Lopez-Gonzalvez ◽  
...  

Purpose: High-throughput “-omic” technologies have enabled the detailed analysis of metabolic networks in several cancers, but NETs have not been explored to date. We aim to assess the metabolomic profile of NET patients to understand metabolic deregulation in these tumors and identify novel biomarkers with clinical potential. Methods: Plasma samples from 77 NETs and 68 controls were profiled by GC−MS, CE−MS and LC−MS untargeted metabolomics. OPLS-DA was performed to evaluate metabolomic differences. Related pathways were explored using Metaboanalyst 4.0. Finally, ROC and OPLS-DA analyses were performed to select metabolites with biomarker potential. Results: We identified 155 differential compounds between NETs and controls. We have detected an increase of bile acids, sugars, oxidized lipids and oxidized products from arachidonic acid and a decrease of carnitine levels in NETs. MPA/MSEA identified 32 enriched metabolic pathways in NETs related with the TCA cycle and amino acid metabolism. Finally, OPLS-DA and ROC analysis revealed 48 metabolites with diagnostic potential. Conclusions: This study provides, for the first time, a comprehensive metabolic profile of NET patients and identifies a distinctive metabolic signature in plasma of potential clinical use. A reduced set of metabolites of high diagnostic accuracy has been identified. Additionally, new enriched metabolic pathways annotated may open innovative avenues of clinical research.


Author(s):  
Mónica Yorlady Alzate Zuluaga ◽  
Karina Maria Lima Milani ◽  
Maria Begoña Miras-Moreno ◽  
Luigi Lucini ◽  
Fabio Valentinuzzi ◽  
...  

2021 ◽  
Vol 33 (6) ◽  
pp. 427
Author(s):  
Mohua DasGupta ◽  
Arumugam Kumaresan ◽  
Kaustubh Kishor Saraf ◽  
Gayathree Karthikkeyan ◽  
T. S. Keshava Prasad ◽  
...  

Poor semen quality and infertility/subfertility are more frequent in crossbred than zebu bulls. Using a high-throughput liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based approach, we established the preliminary metabolomic profile of crossbred and zebu bull spermatozoa (n=3 bulls each) and identified changes in sperm metabolomics between the two groups. In all, 1732 and 1240 metabolites were detected in zebu and crossbred bull spermatozoa respectively. After excluding exogenous metabolites, 115 and 87 metabolites were found to be unique to zebu and crossbred bull spermatozoa respectively whereas 71 metabolites were common to both. In the normalised data, 49 metabolites were found to be differentially expressed between zebu and crossbred bull spermatozoa. The significantly enriched (P<0.05) pathways in spermatozoa were taurine and hypotaurine metabolism (observed metabolites taurine and hypotaurine) in zebu and glycerophospholipid metabolism (observed metabolites phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine) in crossbred bulls. The abundance of nitroprusside (variable importance in projection (VIP) score >1.5) was downregulated, whereas that of l-cysteine, acetyl coenzyme A and 2′-deoxyribonucleoside 5′-diphosphate (VIP scores >1.0) was upregulated in crossbred bull spermatozoa. In conclusion, this study established the metabolomic profile of zebu and crossbred bull spermatozoa and suggests that aberrations in taurine, hypotaurine and glycerophospholipid metabolism may be associated with the higher incidence of infertility/subfertility in crossbred bulls.


Sign in / Sign up

Export Citation Format

Share Document