scholarly journals Prevalence of endocrine disorders among children exposed to Lavender Essential Oil and Tea Tree Essential Oils

Author(s):  
Jessie Hawkins ◽  
Christy Hires ◽  
Elizabeth Dunne ◽  
Lindsey Keenan
2019 ◽  
Vol 2 (3) ◽  
pp. 11-14
Author(s):  
R. M. Sachuk ◽  
Ya. S. Stravsky ◽  
YU. V. Horyuk ◽  
O. A. Katsaraba ◽  
S. V. Zhyhalyuk

Investigate the antimicrobial properties of various concentrations of vegetable essential oils in combination with an oil solution of chlorophyllipt as possible ingredients for ointments for wounds. Microbiological tests were performed according to standard methods using E. coli test cultures, S. aureus, Str. agalactiae and P. fluorescens. The results of studies of antibacterial activity of both individual ingredients and their combinations are presented, namely: 4 % essential oil of Siberian pine, 2 % essential oil of eucalyptus, 1.5 % essential oil of cloves, 1.5 % of essential oil of cedar, 2.0 % tea tree essential oil and 1.0 % chlorophyllipt oil solution. Bacteria, which are usually typical agents of wound infections, have been found to be quite sensitive to the drugs tested. High activity of essential oils and oily solution of chlorophyllipt with respect to E. coli and S. aureus was revealed. In particular, a 1.0 % oily solution of chlorophyllipt caused staphylococcal growth retardation zones whose diameters were 1.4 times larger than the antibiotic clindamycin. It was determined that representatives of gram-negative microflora were more sensitive to the investigated essential oils and chlorophyll. The optimal composition of the experimental drug called “Ointment for wounds” is offered. The results of preclinical testing showed a sufficiently high efficiency compared to traditional means. The results obtained with regard to antimicrobial activity indicate the prospect of using preparations based on the essential oil of Siberian pine, eucalyptus, carnation, cedar, tea tree and oil solution of chlorophyllipt for the treatment of skin diseases in animals. This data will help to develop new effective and safe veterinary treatments for wound care.


2007 ◽  
Vol 54 (2) ◽  
pp. 106-114
Author(s):  
D. Markovic ◽  
B. Mirkovic ◽  
T. Jovanovic ◽  
A. Knezevic ◽  
T. Nastovski

Essential oils are widely used in medicine, dentistry and cosmetology as flavour and odour corrigents in various substances for oral hygiene. The aim of this study was to present comprehensively the possibilities for application of Melaleuca Alternifolia essential oil in dentistry based on the analysis of contemporary scientific and professional publications. The application of Tea tree essential oil in the treatment of periodontal, fungal and viral diseases is very efficient. The study of antimicrobial potential of ten different essential oils confirmed the efficiency of Tea tree oil against numerous Gram+ and Gram- bacteria. In vitro studies of bacteriostatic, bactericidal and fungicidal effect of Tea tree oil solution against ten different microorganisms confirmed sensitivity of the following microorganisms: Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum and Porphyromonas gingivalis, and slightly weaker effect against Streptococcus Mutans and Prevotella intermedia. Tea tree is very effective in the treatment of various diseases and is an introduction and momentum for the application of plant substances in the treatment of numerous diseases in dentistry. .


2022 ◽  
Vol 8 (1) ◽  
pp. 119-123
Author(s):  
Baiq Riyankati ◽  
Surya Hadi ◽  
Sri Seno Handayani

Tea tree is an essential oil-producing plant from Australia which is also found growing in several parts of Indonesia, including the island of Lombok. So far, tea tree essential oil producers on the island of Lombok do not utilize by-products in the form of hydrosol (distilled water) produced in the process of making essential oils. In this study, the characterization and analysis of the chemical composition of the hydrosol of tea tree leaves growing on the island of Lombok was carried out. The characteristic aroma of hydrosol is similar to that of tea tree essential oil. The results of the GC-MS analysis also showed that the hydrosol of tea tree leaves also had similarities with the essential oil, composed of major compounds in the form of trans-caryophyllene (28.58%), limonene (13.98%) and terpinen-4-ol (16.27%). Other compounds detected were -pinene (4.14%), -pinene (6.50%), -myrcene (8.09%), -terpineol (10.10%) and -terpinene (5.77%).


2021 ◽  
Vol 18 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Ashana Puri ◽  
Rajat Nanda

: A pre-eminent emulsion based micellar drug delivery system, “microemulsion”, comprising of drug in oil or water phase, stabilized by surfactants and co-surfactants, has been evidenced to have phenomenal role in number of applications. Oils play an important role in formation of ME and increase the drug absorption at the site of action. Oils employed in microemulsion formulation solubilize lipophilic drug. As concept of “natural” therapies is recently gaining importance amongst researchers all over the world, scientists are employing essential oil as an organic component in this system. The active components of essential oils include flavonoids, phenylpropanoids, monoterpenes and polyunsaturated of mega-6-fatty acids. These oils are enriched with characteristic intrinsic properties such as anti-oxidant, anti-bacterial, anti-viral, etc. bestows an enhanced supremacy to whole microemulsion system. This mini-review is the first to document various types of essential oils employed in microemulsion systems and highlight their therapeutic potential and applications as drug delivery vehicles. Key inferences from this study suggest: 1) Clove oil is the most explored oil for incorporation into microemulsion based system, followed by peppermint and Tea Tree Oil (TTO). 2) Penetration enhancing effects of these oils is due to the presence of terpenic constituents. 3) Essential oil based microemulsions protect volatility of ethereal oils and protect them from degradation in presence of light, air, temperature. 4) These systems may also be explored for their applications in different industries like aromatherapy, food, drink, fragrance, flavour, cosmeceutical, soap, petroleum and pharmaceutical industry.


10.5219/1106 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 604-613
Author(s):  
Dana Tančinová ◽  
Denisa Foltínová ◽  
Zuzana Mašková ◽  
Jana Štefániková ◽  
Július Árvay

The aim of this research was to determine the inhibitory effect of vapor phase of five essential oils (EOs) on the growth of seven strains of Penicillium commune isolated from moldy milk products. Another objective was to determine the minimum inhibitory doses (in vitro and probit analyses) of EOs, which at concentration 625 μL.L-1 of air completely inhibited the growth of all strains. The antifungal activity was evaluated by the micro-atmosphere method. The essential oils used in this study were extract of plants from family Myrtaceae. Only one essential oil – clove (from Syzygium aromaticum L.; leaves) completely inhibited the growth of all strains during cultivation at 25 °C and 5 °C. Eucalyptus essential oil (from Eucaliptus globulus; leaves), tea tree essential oil (from Melaleuca alternifolia Cheel; leaves), cajeput essential oil (from Melaleuca leucadendra L.; leaves and twigs), niaouli essential oil (from Melaleuca quinquenervia (Cav.) S.T.Blake; leaves) have different effects on the growth of P. commune strains. The order of tested essential oils according to the inhibition effect on the growth of the strains of P. commune (from the strongest to the weakest effect) was: clove > tea tree > cajeput > niaouli > eucalyptus. Clove EO that completely inhibited the growth of all strains was used to determine minimum inhibitory doses (MIDs). The MIDs were 125 µL.L-1 of air for two strains of P. commune and 250 µL.L-1 of air for five strains of P. commune on the 7th and 14th day of cultivation, also. Using probit analysis, predicted MIDs90 and MIDs50 were calculated. The MIDs90 were determined from 104.93 to 301.37 µL.L-1 of air.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 546
Author(s):  
Nikola Puvača ◽  
Jovana Milenković ◽  
Tamara Galonja Galonja Coghill ◽  
Vojislava Bursić ◽  
Aleksandra Petrović ◽  
...  

The worldwide problem of infectious diseases has appeared in recent years, and antimicrobial agents are crucial in reducing disease emergence. Nevertheless, the development and distribution of multidrug-resistant (MDR) strains in pathogenic bacteria, such as Escherichia coli, Staphylococcus aureus, Salmonella Typhi and Citrobacter koseri, has become a major society health hazard. Essential oils could serve as a promising tool as a natural drug in fighting the problem with these bacteria. The current study aimed to investigate the antimicrobial effectiveness of tea tree (Melaleuca alternifolia (Maiden and Betche) Cheel), rosemary (Rosmarinus officinalis L.), eucalyptus (Eucalyptus obliqua L’Hér.), and lavender (Lavandula angustifolia Mill) essential oils. The antimicrobial properties of essential oils were screened against four pathogenic bacteria, E. coli, S. aureus, S. Tyhpi, and C. koseri, and two reference bacterial strains, while for the testing, the agar well diffusion method was used. Gas chromatography (GC) and gas chromatography–mass spectrometric (GC–MSD) analyses were performed on essential oils. The obtained results showed that M. alternifolia essential oil is the richest in terpinen-4-ol, R. officinalis and E. oblique essential oils in 1,8-cineole, and L. angustifolia essential oil in α-terpinyl acetate. In addition, the main bioactive compounds present in the essential oil of tea tree are rich in α-pinene (18.38%), limonene (7.55%) and γ-terpinene (14.01%). The essential oil of rosemary is rich in α-pinene (8.38%) and limonene (11.86%); eucalyptus essential oil has significant concentrations of α-pinene (12.60%), p-cymene (3.24%), limonene (3.87%), and γ-terpinene (7.37%), while the essential oil of lavender is rich in linalool (10.71%), linalool acetate (9.60%), α-terpinyl acetate (10.93%), and carbitol (13.05%) bioactive compounds, respectively. The obtained results from the in vitro study revealed that most of the essential oils exhibited antimicrobial properties. Among the tested essential oils, tea tree was discovered to demonstrate the strongest antimicrobial activity. The recorded MIC of S. Typhi was 6.2 mg/mL, 3.4 mg/mL of C. koseri, 3.1 mg/mL of E. coli, and 2.7 mg/mL of E. Coli ATCC 25922, compared to M. alternifolia. Similarly, only S. aureus ATCC 25923 showed antimicrobial activity towards R. officinalis (1.4 mg/mL), E. oblique (2.9 mg/mL), and L. angustifolia (2.1 mg/mL). Based on the obtained results, it is possible to conclude that tea tree essential oil might be used as an ecological antimicrobial in treating infectious diseases caused by the tested pathogens.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3055
Author(s):  
Qasim Ahmed ◽  
Manjree Agarwal ◽  
Ruaa Al-Obaidi ◽  
Penghao Wang ◽  
Yonglin Ren

The insecticidal activities of essential oils obtained from black pepper, eucalyptus, rosemary, and tea tree and their binary combinations were investigated against the green peach aphid, Myzus persicae (Aphididae: Hemiptera), under laboratory and glasshouse conditions. All the tested essential oils significantly reduced and controlled the green peach aphid population and caused higher mortality. In this study, black pepper and tea tree pure essential oils were found to be an effective insecticide, with 80% mortality when used through contact application. However, for combinations of essential oils from black pepper + tea tree (BT) and rosemary + tea tree (RT) tested as contact treatment, the mortality was 98.33%. The essential oil combinations exhibited synergistic and additive interactions for insecticidal activities. The combination of black pepper + tea tree, eucalyptus + tea tree (ET), and tea tree + rosemary showed enhanced activity, with synergy rates of 3.24, 2.65, and 2.74, respectively. Essential oils formulation was effective on the mortality of aphids. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that stability of a mixture of essential oils was not affected by store temperature (15, 25, and 35 °C) and the functional groups were not changed during storage. Based on our results, the essential oils can be used as a commercial insecticide against M. persicae.


2020 ◽  
Vol 3 (1) ◽  
pp. 249
Author(s):  
Thais Rossini Oliveira ◽  
Anderson Laerte Teixeira ◽  
Janaina Priscila Barbosa ◽  
Simone N. Busato de Feiria ◽  
Giovana C. Boni ◽  
...  

Medicinal plants have long been used as an alternative in the treatment of diseases, whether using extracts, essential oils and / or bioactive components. Thus, the use of medicinal plants, with popularly known effects for the treatment of infections, has gained prominence, in research related to extracts and essential oils of medicinal plants, in an attempt to discover and future application of new molecules with antimicrobial and / or effect coadjuvant molecules to antimicrobials on the market. Studies with species of Melaleuca spp., Demonstrate wide application of its essential oil, without treating skin infections, microbial infections, herpes, diseases associated with pathogenic microorganisms of the oral cavity. The emerging microbial resistance to the drugs currently available on the market, has been affected by both researchers and the general population, so that the research experimented with was conducted revealing a high synergistic potential between drugs and natural drugs, present in drugs. In view of the above, this study aimed to present, through a bibliographic survey, a use of medicinal plants in the face of microbial resistance, as well as medicinal therapy based on the use of essential oils from alternative tea tree, leucadendron tea tree and quinquenervia tea tree, already inclusion in the literature.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3753
Author(s):  
Jorge Iván Castro ◽  
Carlos Humberto Valencia-Llano ◽  
Mayra Eliana Valencia Zapata ◽  
Yilmar Joan Restrepo ◽  
José Herminsul Mina Hernandez ◽  
...  

Tissue engineering is crucial, since its early adoption focused on designing biocompatible materials that stimulate cell adhesion and proliferation. In this sense, scaffolds made of biocompatible and resistant materials became the researchers’ focus on biomedical applications. Humans have used essential oils for a long time to take advantage of their antifungal, insecticide, antibacterial, and antioxidant properties. However, the literature demonstrating the use of essential oils for stimulating biocompatibility in new scaffold designs is scarce. For that reason, this work describes the synthesis of four different film composites of chitosan/polyvinyl alcohol/tea tree (Melaleuca alternifolia), essential oil (CS/PVA/TTEO), and the subdermal implantations after 90 days in Wistar rats. According to the Young modulus, DSC, TGA, mechanical studies, and thermal studies, there was a reinforcement effect with the addition of TTEO. Morphology and energy-dispersive (EDX) analysis after the immersion in simulated body fluid (SBF) exhibited a light layer of calcium chloride and sodium chloride generated on the material’s surface, which is generally related to a bioactive material. Finally, the biocompatibility of the films was comparable with porcine collagen, showing better signs of resorption as the amount of TTEO was increased. These results indicate the potential application of the films in long-term biomedical needs.


Sign in / Sign up

Export Citation Format

Share Document