Flexural behavior and water absorption of asymmetrical sandwich composites from natural fibers and cork agglomerate core

2014 ◽  
Vol 127 ◽  
pp. 48-52 ◽  
Author(s):  
R. Hoto ◽  
G. Furundarena ◽  
J.P. Torres ◽  
E. Muñoz ◽  
J. Andrés ◽  
...  
2018 ◽  
Vol 773 ◽  
pp. 94-99 ◽  
Author(s):  
Venitalitya Augustia ◽  
Achmad Chafidz ◽  
Lucky Setyaningsih ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

The trend of using natural fibers as green filler in the fabrication of polymer composites is increasing. One of these natural fibers is date palm fiber (DPF). Date palm fiber is considered as agricultural waste in certain areas, such as Middle East countries. Therefore, the utilization of this fiber in the composites fabrication is an interesting topic of research. In the current study, composites were prepared by melt blending DPF with high density polyethylene (HDPE). Five different DPF loadings were studied (i.e. 0, 5, 10, 20, 30 wt%). The effect of the DPF loadings on the mechanical properties and water absorption behavior of the composites were investigated. The tensile test result showed that tensile strengths of all the composites samples were all higher than the neat HDPE with the maximum improvement was achieved at the DPF loading of 5 wt% (i.e. DFC-5), which was about 19.23 MPa (138% higher than the neat HDPE). Whereas, the flexural test result showed that the flexural strength of the composites slightly increased compared to that of the neat HDPE only until 5 wt% DPF loading (i.e. DFC-5). Afterward, the flexural strength of the DFC-10 was equal to that of the neat HDPE, and decreasing with further increase of DPF loadings. Additionally, the water absorption test result showed that the water absorption rate and uptake of water (at equilibrium) increased with the increase of DPF loading.


Author(s):  
A Arul Jeya Kumar ◽  
M Prakash

In today's scenario, most of the research works are carried out on the replacement of synthetic fibers using eco-friendly materials called natural fibers. Although there are many research findings in connection with natural fibers, in this work, a new combination of natural fiber having high biomedical potential is reinforced in the polymer composite. Three different weight fractions of polylactic acid, basalt, and Cissus quadrangularis fibers were melt mixed using twin-screw extruder named as PBCQ 1, PBCQ 2, and PBCQ 3. The mechanical, physical, and thermomechanical properties were studied by testing tensile, flexural, impact, hardness, water absorption, Fourier-transform infrared spectroscopy, and dynamic mechanical analysis of the injection-molded biomedical composite specimens prepared as per ASTM standards. It was noticed that the PBCQ 2 composite has the maximum elongation strength, bending strength, shear strength, and shore D hardness compared to other composites taken in this study. Water absorption of PBCQ 1 and PBCQ 2 composites are relatively less than PBCQ 3. The scanning electron microscopy micrograph of PBCQ composites shows tight bonding between the matrix and fibers. The adhesion of matrix and fibers was confirmed by Fourier-transform infrared spectroscopy graph, which indicates the stretching of molecular structure for the occurrence of O–H, C=O, and C–H links. The dynamic mechanical analysis curve of the PBCQ 2 composite indicates high storage modulus and less loss modulus compared to PBCQ 1 and PBCQ 3 due to the low weight percentage of basalt fiber in these composites.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Tesfamariam Teklu ◽  
Teklit Kidane Gebremedhin ◽  
Amanual Hadera Tesfay ◽  
Asfaw Gebretsadik Gebru ◽  
Ykalo Hadush Desta ◽  
...  

Polyaniline-modified natural fibers have been recognized as promising candidates for conductive clothes, UV protection, and electromagnetic interference shielding. Hence, the purpose of this study was to investigate the effect of surface deposition of cotton fibers using polyaniline via in situ polymerization, and preceding structural changes were further screened by FT-IR, UV-Vis, TGA, SEM/EDX, and conductivity in comparison with bare cotton fibers used as the control sample. Polyaniline was introduced on the surface of cotton fibers as a conductive form, which was confirmed by electrical conductivity (1.54 × 10−4 Scm−1) equivalent to semiconductor materials. Detection of particular peaks at NKα 0.379 keV and ClKα 2.621 keV from EDX analysis revealed the introduction of nitrogen and chlorine, respectively. Polyaniline deposition on the cotton surface was successful to introduce hydrophobic environment to the system to enhance resistance to water absorption meaningfully.


1972 ◽  
Vol 12 (12) ◽  
pp. 549-556 ◽  
Author(s):  
M. K. S. Phang ◽  
H. Kraus

2005 ◽  
Vol 297-300 ◽  
pp. 213-218 ◽  
Author(s):  
Yang Bae Jeon ◽  
Do Won Seo ◽  
Jae Kyoo Lim

Using natural fibers that are inexpensive, lightweight and biodegradable, as the reinforcement for composites is difficult due to their poor interfacial properties between hydrophilic fiber and hydrophobic polymer matrices. It is necessary to evaluate fracture toughness of natural fiber reinforced composites according to water absorption rates to improve mechanical performance of those. In this study, compact tension fracture test was conducted to evaluate fracture toughness with the various specimens. The value of fracture toughness has the tendency to decrease as water absorption rate increases. And different surface treatment methods and different polymer matrices have influence on the value of fracture toughness.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3189 ◽  
Author(s):  
Annandarajah ◽  
Langhorst ◽  
Kiziltas ◽  
Grewell ◽  
Mielewski ◽  
...  

: In the recent years, automakers have been striving to improve the carbon footprint of their vehicles. Sustainable composites, consisting of natural fibers, and/or recycled polymers have been developed as a way to increase the “green content” and reduce the weight of a vehicle. In addition, recent studies have found that the introduction of synthetic fibers to a traditional fiber composite such as glass filled plastics, producing a composite with multiple fillers (hybrid fibers), can result in superior mechanical properties. The objective of this work was to investigate the effect of hybrid fibers on characterization and material properties of polyamide-6 (PA6)/polypropylene (PP) blends. Cellulose and glass fibers were used as fillers and the mechanical, water absorption, and morphological properties of composites were evaluated. The addition of hybrid fibers increased the stiffness (tensile and flexural modulus) of the composites. Glass fibers reduced composite water absorption while the addition of cellulose fibers resulted in higher composite stiffness. The mechanical properties of glass and cellulose filled PA6/PP composites were optimized at loading levels of 15 wt% glass and 10 wt% cellulose, respectively.


2020 ◽  
Vol 1010 ◽  
pp. 520-525
Author(s):  
Sinar Arzuria Adnan ◽  
Firuz Zainuddin ◽  
Nur Hidayah Ahmad Zaidi ◽  
Nur Afikah Zulkeply ◽  
Nur Maizatul Shima Adzali ◽  
...  

Polyurethane (PU) foam were produced from polyol (PolyGreen R3110) and 4,4- diphenylmethane diisocyanate (Maskiminate 80) with distilled water as a blowing agent. Natural fibers have received more attention from researchers due to their ability to increase the properties of the polymer composites. In this work, PU/Henna foam composites were prepared by used Henna fibers at different loading of 5, 10, 15 and 20 wt. %. The effect of different Henna loading on PU foam were investigated by density, compression test, morphology and water absorption. Core density of PU/Henna foam composites increased with addition Henna compared to control PU and showed highest core density of 85.10 kgm-3. Compressive strength decreased to 0.53 MPa after Henna addition at 5 % PU/Henna foam composites. Henna addition to 20 % PU/Henna foam composites were reduced the compressive strength to 0.97 MPa due to stiffness effect of Henna that contributed to embrittlement of the cell wall. The distorted cell wall and less uniform of cell structure were proved by SEM due to Henna addition as compared to control PU. Water absorption percentage of PU/Henna foam composites were increased with Henna addition as compared to control PU. It is because hydrophilic properties of Henna tendency to absorb moisture.


2012 ◽  
Vol 31 (18) ◽  
pp. 1191-1200 ◽  
Author(s):  
Sunil Kumar Ramamoorthy ◽  
Qin Di ◽  
Kayode Adekunle ◽  
Mikael Skrifvars

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Layth Mohammed ◽  
M. N. M. Ansari ◽  
Grace Pua ◽  
Mohammad Jawaid ◽  
M. Saiful Islam

Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs) and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.


2014 ◽  
Vol 984-985 ◽  
pp. 248-252
Author(s):  
S. Vijayakumar ◽  
S. Manikandan ◽  
L. Karunamoorthy

Natural fibers are used for replacing synthetic fibers as reinforcement in various matrices. This paper is presents the fabrication and water absorption characteristics of various natural fibers reinforced composite fabricated by hand layering technique. The water absorbing capacity, diffusion and permeability of various natural fibers like rice straw, Kenaf, Coconut Spathe, Coconut Guinit reinforced composite with different dipping time intervals were analyzed. Morphological analysis was carried out on fabricated and soaked samples using scanning electron microscope. From the experimental work it is observed that coconut guinits and rice straw shows comparatively very low water absorbing capacity. Alkaline treatment of fibers doesnot have any major variation in water absorbing capacity.


Sign in / Sign up

Export Citation Format

Share Document