2D materials inks toward smart flexible electronics

2021 ◽  
Author(s):  
Oyawale Adetunji Moses ◽  
Libo Gao ◽  
Haitao Zhao ◽  
Zhuo Wang ◽  
Mukhtar Lawan Adam ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1672
Author(s):  
Umahwathy Sundararaju ◽  
Muhammad Aniq Shazni Mohammad Haniff ◽  
Pin Jern Ker ◽  
P. Susthitha Menon

A photodetector converts optical signals to detectable electrical signals. Lately, self-powered photodetectors have been widely studied because of their advantages in device miniaturization and low power consumption, which make them preferable in various applications, especially those related to green technology and flexible electronics. Since self-powered photodetectors do not have an external power supply at zero bias, it is important to ensure that the built-in potential in the device produces a sufficiently thick depletion region that efficiently sweeps the carriers across the junction, resulting in detectable electrical signals even at very low-optical power signals. Therefore, two-dimensional (2D) materials are explored as an alternative to silicon-based active regions in the photodetector. In addition, plasmonic effects coupled with self-powered photodetectors will further enhance light absorption and scattering, which contribute to the improvement of the device’s photocurrent generation. Hence, this review focuses on the employment of 2D materials such as graphene and molybdenum disulfide (MoS2) with the insertion of hexagonal boron nitride (h-BN) and plasmonic nanoparticles. All these approaches have shown performance improvement of photodetectors for self-powering applications. A comprehensive analysis encompassing 2D material characterization, theoretical and numerical modelling, device physics, fabrication and characterization of photodetectors with graphene/MoS2 and graphene/h-BN/MoS2 heterostructures with plasmonic effect is presented with potential leads to new research opportunities.


2018 ◽  
Vol 56 (1) ◽  
pp. 62-78 ◽  
Author(s):  
S. Vlassov ◽  
S. Oras ◽  
M. Antsov ◽  
I. Sosnin ◽  
B. Polyakov ◽  
...  

Abstract Polydimethylsiloxane (PDMS) is the most widely used silicon-based organic polymer, and is particularly known for its unusual rheological properties. PDMS has found extensive usage in various fields ranging from microfluidics and flexible electronics to cosmetics and food industry. In certain applications, like e.g. dry adhesives or dry transfer of 2D materials, adhesive properties of PDMS play crucial role. In this review we focus on probing the mechanical and adhesive properties of PDMS by means of atomic force microscopy (AFM). Main advantages and limitations of AFM-based measurements in comparison to macroscopic tests are discussed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joel Berry ◽  
Simeon Ristić ◽  
Songsong Zhou ◽  
Jiwoong Park ◽  
David J. Srolovitz

AbstractThe properties of 2D materials can be broadly tuned through alloying and phase and strain engineering. Shape programmable materials offer tremendous functionality, but sub-micron objects are typically unachievable with conventional thin films. Here we propose a new approach, combining phase/strain engineering with shape programming, to form 3D objects by patterned alloying of 2D transition metal dichalcogenide (TMD) monolayers. Conjugately, monolayers can be compositionally patterned using non-flat substrates. For concreteness, we focus on the TMD alloy MoSe$${}_{2c}$$2cS$${}_{2(1-c)}$$2(1−c); i.e., MoSeS. These 2D materials down-scale shape/composition programming to nanoscale objects/patterns, provide control of both bending and stretching deformations, are reversibly actuatable with electric fields, and possess the extraordinary and diverse properties of TMDs. Utilizing a first principles-informed continuum model, we demonstrate how a variety of shapes/composition patterns can be programmed and reversibly modulated across length scales. The vast space of possible designs and scales enables novel material properties and thus new applications spanning flexible electronics/optics, catalysis, responsive coatings, and soft robotics.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1456 ◽  
Author(s):  
Yixiong Zheng ◽  
Chunyan Yuan ◽  
Sichen Wei ◽  
Hyun Kim ◽  
Fei Yao ◽  
...  

In this paper, we report the first successful demonstration of the direct growth of high-quality two-dimensional (2D) MoS2 semiconductors on a flexible substrate using a 25-μm-thick Yttria-stabilized zirconia ceramic substrate. Few-layered MoS2 crystals grown at 800 °C showed a uniform crystal size of approximately 50 μm, which consisted of about 10 MoS2 layers. MoS2 crystals were characterized using energy-dispersive X-ray spectroscopy. Raman spectroscopy was performed to investigate the crystal quality under bending conditions. The Raman mapping revealed a good uniformity with a stable chemical composition of the MoS2 crystals. Our approach offers a simple and effective route to realize various flexible electronics based on MoS2.Our approach can be applied for MoS2 growth and for other 2D materials. Therefore, it offers a new opportunity that allows us to demonstrate high-performance flexible electronic/optoelectronic applications in a less expensive, simpler, and faster manner without sacrificing the intrinsic performance of 2D materials.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Nicholas R Glavin ◽  
Christopher Muratore ◽  
Michael Snure

Abstract Two-dimensional nanomaterials exhibit exceptional multifunctional properties including high-electron mobilities/saturation velocities, high surface to volume ratios, unique layered structures and mechanical compliance, positioning the class of materials to be influential in next-generation flexible electronics for applications in wearables and the Internet of things. In this perspective, three key areas of interest are identified that take advantage of the multifunctional nature of these materials including molecular sensing, van der Waals transfer and compliant radio frequency electronics. Significantly more progress needs to be made to realize commercialization of these materials, but the revolutionary accessible properties may reveal themselves in these three key areas of future flexible electronic systems.


Author(s):  
Kasra Momeni ◽  
Yanzhou Ji ◽  
Long-Qing Chen

Abstract The exotic properties of 2D materials made them ideal candidates for applications in quantum computing, flexible electronics, and energy technologies. A major barrier to their adaptation for industrial applications is their controllable and reproducible growth at a large scale. A significant effort has been devoted to the chemical vapor deposition (CVD) growth of wafer-scale highly crystalline monolayer materials through exhaustive trial-and-error experimentations. However, major challenges remain as the final morphology and growth quality of the 2D materials may significantly change upon subtle variation in growth conditions. Here, we introduced a multiscale/multiphysics model based on coupling continuum fluid mechanics and phase-field models for CVD growth of 2D materials. It connects the macroscale experimentally controllable parameters, such as inlet velocity and temperature, and mesoscale growth parameters such as surface diffusion and deposition rates, to morphology of the as-grown 2D materials. We considered WSe2 as our model material and established a relationship between the macroscale growth parameters and the growth coverage. Our model can guide the CVD growth of monolayer materials and paves the way to their synthesis-by-design. Graphic abstract


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Changjian Zhou ◽  
Shouyong Zhang ◽  
Zhe Lv ◽  
Zichao Ma ◽  
Cui Yu ◽  
...  

AbstractSelf-driven photodetectors that can detect light without any external voltage bias are important for low-power applications, including future internet of things, wearable electronics, and flexible electronics. While two-dimensional (2D) materials exhibit good optoelectronic properties, the extraordinary properties have not been fully exploited to realize high-performance self-driven photodetectors. In this paper, a metal–semiconductor–metal (MSM) photodetector with graphene and Au as the two contacts have been proposed to realize the self-driven photodetector. Van der Waals contacts are formed by dry-transfer methods, which is important in constructing the asymmetrical MSM photodetector to avoid the Fermi-level pinning effect. By choosing graphene and Au as the two contact electrodes, a pronounced photovoltaic effect is obtained. Without any external bias, the self-driven photodetector exhibits a high responsivity of 7.55 A W−1 and an ultrahigh photocurrent-to-dark current ratio of ~108. The photodetector also shows gate-tunable characteristics due to the field-induced Fermi-level shift in the constituent 2D materials. What is more, the high linearity of the photodetector over almost 60 dB suggests the easy integration with processing circuits for practical applications.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


2020 ◽  
Author(s):  
Aleksandra Radenovic
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document