Changes in physiological and photosynthetic parameters in tomato of different ethylene status under salt stress: Effects of exogenous 1-aminocyclopropane-1-carboxylic acid treatment and the inhibition of ethylene signalling

2020 ◽  
Vol 156 ◽  
pp. 345-356
Author(s):  
Péter Borbély ◽  
Péter Poór ◽  
Irma Tari
Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1303
Author(s):  
Badar Jahan ◽  
Noushina Iqbal ◽  
Mehar Fatma ◽  
Zebus Sehar ◽  
Asim Masood ◽  
...  

In the present study, the potential of ethylene as ethephon (an ethylene source) was investigated individually and in combination with split doses of nitrogen (N) and sulfur (S) soil treatments for removal of the damaging effects of salt stress (100 mM NaCl) in mustard (Brassica juncea L.). Plants were grown with 50 mg N plus 50 mg S kg−1 soil at sowing time and an equivalent dose at 20 days after sowing [N50 + S50]0d and 20d. Ethephon at 200 μL L‒1 was applied to combined split doses of N and S with or without NaCl. Plants subjected to NaCl showed a decrease in growth and photosynthetic characteristics as well as N and S assimilation, whereas proline metabolism and antioxidants increased. The application of ethephon to plants grown with split N and S doses significantly enhanced photosynthetic efficiency by increasing the assimilation of N and S, improving the concentration of proline and induction of the antioxidant system with or without NaCl. The regulation of ethylene and/or split forms of N and S application may be potential tools for not just overcoming salt stress effects in this species and in related Brassicaceae but also enhancing their photosynthesis and growth potential through increased nutrient assimilation.


2014 ◽  
Vol 20 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Lin Li ◽  
Haihui Zhang ◽  
Li Zhang ◽  
Yonghong Zhou ◽  
Ruiwu Yang ◽  
...  

HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1640-1646 ◽  
Author(s):  
Fei Xiong ◽  
Jieren Liao ◽  
Yuanchun Ma ◽  
Yuhua Wang ◽  
Wanping Fang ◽  
...  

Camellia sinensis cultivars were treated with 5 mm putrescine (Put) under a range of sodium chloride (NaCl) concentrations. Plant performance, as indicated by various indicators associated with plant growing condition such as photosynthetic parameters and polyamine (PA) contents, especially the content of Put, was improved by the treatment. The extent of both Na+ accumulation and K+ loss increased. The activity levels of the antioxidant enzymes related to salt stress, such as superoxide dismutase (SOD), peroxidase (POD), and catalase, were significantly altered with different salt stress levels and showed a decrease in the general trend. Besides, tea polyphenols, the tea quality indicator, increased during the salinity treatment but decreased when we applied Put. These findings suggest that treatment with Put might constitute an effective means for alleviating salinity stress–induced injury through its positive effect on photosynthetic efficiency and for controlling reactive oxygen species (ROS) scavenging ability under appropriate salt stress levels.


2019 ◽  
Vol 46 (1) ◽  
pp. 82 ◽  
Author(s):  
Fang Yuan ◽  
Xue Liang ◽  
Ying Li ◽  
Shanshan Yin ◽  
Baoshan Wang

Limonium bicolor is a typical recretohalophyte with salt glands in the epidermis, which shows maximal growth at moderate salt concentrations (100mM NaCl) but reduced growth in the presence of excess salt (more than 200mM). Jasmonic acid (JA) alleviates the reduced growth of L. bicolor under salt stress; however, the underlying mechanism is unknown. In this study we investigated the effects of exogenous methyl jasmonate (MeJA) application on L. bicolor growth at high NaCl concentrations. We found that treatment with 300mM NaCl led to dramatic inhibition of seedling growth that was significantly alleviated by the application of 0.03mM MeJA, resulting in a biomass close to that of plants not subjected to salt stress. To determine the parameters that correlate with MeJA-induced salt tolerance (assessed as the biomass production in saline and control conditions), we measured 14 physiological parameters relating to ion contents, plasma membrane permeability, photosynthetic parameters, salt gland density, and salt secretion. We identified a correlation between individual indicators and salt tolerance: the most positively correlated indicator was net photosynthetic rate, and the most negatively correlated one was relative electrical conductivity. These findings provide insights into a possible mechanism underlying MeJA-mediated salt stress alleviation.


2019 ◽  
Vol 20 (5) ◽  
pp. 1047 ◽  
Author(s):  
Jian Yu ◽  
Lijuan Niu ◽  
Jihua Yu ◽  
Weibiao Liao ◽  
Jianming Xie ◽  
...  

Calcium and ethylene are essential in plant growth and development. In this study, we investigated the effects of calcium and ethylene on adventitious root formation in cucumber explants under salt stress. The results revealed that 10 μM calcium chloride (CaCl2) or 0.1 μM ethrel (ethylene donor) treatment have a maximum biological effect on promoting the adventitious rooting in cucumber under salt stress. Meanwhile, we investigated that removal of ethylene suppressed calcium ion (Ca2+)-induced the formation of adventitious root under salt stress indicated that ethylene participates in this process. Moreover, the application of Ca2+ promoted the activities of 1-aminocyclopropane-l-carboxylic acid synthase (ACS) and ACC Oxidase (ACO), as well as the production of 1-aminocyclopropane-l-carboxylic acid (ACC) and ethylene under salt stress. Furthermore, we discovered that Ca2+ greatly up-regulated the expression level of CsACS3, CsACO1 and CsACO2 under salt stress. Meanwhile, Ca2+ significantly down-regulated CsETR1, CsETR2, CsERS, and CsCTR1, but positively up-regulated the expression of CsEIN2 and CsEIN3 under salt stress; however, the application of Ca2+ chelators or channel inhibitors could obviously reverse the effects of Ca2+ on the expression of the above genes. These results indicated that Ca2+ played a vital role in promoting the adventitious root development in cucumber under salt stress through regulating endogenous ethylene synthesis and activating the ethylene signal transduction pathway.


2020 ◽  
Vol 8 (10) ◽  
pp. 1565 ◽  
Author(s):  
Abraham Mulu Oljira ◽  
Tabassum Hussain ◽  
Tatoba R. Waghmode ◽  
Huicheng Zhao ◽  
Hongyong Sun ◽  
...  

Soil salinity is one of the most important abiotic stresses limiting plant growth and productivity. The breeding of salt-tolerant wheat cultivars has substantially relieved the adverse effects of salt stress. Complementing these cultivars with growth-promoting microbes has the potential to stimulate and further enhance their salt tolerance. In this study, two fungal isolates, Th4 and Th6, and one bacterial isolate, C7, were isolated. The phylogenetic analyses suggested that these isolates were closely related to Trichoderma yunnanense, Trichoderma afroharzianum, and Bacillus licheniformis, respectively. These isolates produced indole-3-acetic acid (IAA) under salt stress (200 mM). The abilities of these isolates to enhance salt tolerance were investigated by seed coatings on salt-sensitive and salt-tolerant wheat cultivars. Salt stress (S), cultivar (C), and microbial treatment (M) significantly affected water use efficiency. The interaction effect of M x S significantly correlated with all photosynthetic parameters investigated. Treatments with Trichoderma isolates enhanced net photosynthesis, water use efficiency and biomass production. Principal component analysis revealed that the influences of microbial isolates on the photosynthetic parameters of the different wheat cultivars differed substantially. This study illustrated that Trichoderma isolates enhance the growth of wheat under salt stress and demonstrated the potential of using these isolates as plant biostimulants.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 142 ◽  
Author(s):  
Jan Ellenberger ◽  
Nils Siefen ◽  
Priska Krefting ◽  
Jan-Bernd Schulze Lutum ◽  
Daniel Pfarr ◽  
...  

The green biomass of horticultural plants contains valuable secondary metabolites (SM), which can potentially be extracted and sold. When exposed to stress, plants accumulate higher amounts of these SMs, making the extraction and commercialization even more attractive. We evaluated the potential for accumulating the flavones cynaroside and graveobioside A in leaves of two bell pepper cultivars (Mavras and Stayer) when exposed to salt stress (100 mM NaCl), UVA/B excitation (UVA 4–5 W/m2; UVB 10–14 W/m2 for 3 h per day), or a combination of both stressors. Plant age during the trials was 32–48 days. HPLC analyses proved the enhanced accumulation of both metabolites under stress conditions. Cynaroside accumulation is effectively triggered by high-UV stress, whereas graveobioside A contents increase under salt stress. Highest contents of secondary metabolites were observed in plants exposed to combined stress. Effects of stress on overall plant performance differed significantly between treatments, with least negative impact on above ground biomass found for high-UV stressed plants. The usage of two non-destructive instruments (Dualex and Multiplex) allowed us to gain insights into the ontogenetical effects at the leaf level and temporal development of SM contents. Indices provided by those devices correlate fairly with amounts detected via HPLC (Cynaroside: r2 = 0.46–0.66; Graveobioside A: r2 = 0.51–0.71). The concentrations of both metabolites tend to decrease at leaf level during the ontogenetical development even under stress conditions. High-UV stress should be considered as a tool for enriching plant leaves with valuable SM. Effects on the performance of plants throughout a complete production cycle should be evaluated in future trials. All data is available online.


Sign in / Sign up

Export Citation Format

Share Document