scholarly journals Investigation of the mechanical properties and cutting performance of cBN-based cutting tools with Cr3C2 binder phase.

Procedia CIRP ◽  
2018 ◽  
Vol 72 ◽  
pp. 1433-1438 ◽  
Author(s):  
Kateryna Slipchenko ◽  
Igor Petrusha ◽  
Vladimir Turkevich ◽  
Jakob Johansson ◽  
Volodymyr Bushlya ◽  
...  
2007 ◽  
Vol 534-536 ◽  
pp. 1233-1236
Author(s):  
Geun Woo Park ◽  
Hyuck Sang Kwon

Multilayered coatings on tungsten carbide cutting tools are widely used for enhancing cutting performance. In this paper, we review the CVD TiC/TiCN multilayer as a function of the multilayer period. The TiC/TiCN multilayers in initial stage show preferred (220) orientation but shifts to (200) orientation with decreasing multilayer period. The nanohardness of TiC/TiCN multilayers were found to increase with decreasing multilayer period and shows a maximum of 23.8 GPa at a period = 33.5 nm.


Author(s):  
Kateryna Slipchenko ◽  
Denys Stratiichuk ◽  
Nadezhda Belyavina ◽  
Vladimir Turkevich ◽  
Volodymyr Bushlya ◽  
...  

Silicide based compounds are widely used for coatings due to their high melting temperature, oxidation resistance and moderate density. Employment of binders based on silicides of transitional metals can provide cBN-based cutting tools with higher chemical stability and better performance. The relationship between phase composition, microstructure and mechanical properties of novel polycrystalline cubic boron nitride (PcBN) materials were investigated. Three series of PcBN samples were made by high pressure high temperature (HPHT) sintering. Silicides of chromium – CrSi2, vanadium – VSi2 and molybdenum MoSi2 were used as a binder phase in each case, while aluminum was introduced to the mixture as an oxygen getter. During HPHT sintering at temperatures above 1850 ∘C the formation of borides of binder phase were observed in cases with VSi2 and MoSi2. For system with CrSi2 binder, temperature of boride formation was found to be lower – 1600 ∘C. Materials with MoSi2 binder phase demonstrated the highest level of microhardness. Performance of materials were investigated in conditions of machining of stainless steel AISI 316L and Inconel 718.


2020 ◽  
Vol 39 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Siwen Tang ◽  
Rui Wang ◽  
Pengfei Liu ◽  
Qiulin Niu ◽  
Guoqing Yang ◽  
...  

AbstractWith the concern of the environment, green dry cutting technology is getting more and more attention and self-lubricating tool technology plays an important role in dry cutting. Due to the demand for high temperature performance of tools during dry cutting process, cemented carbide with Ni3Al as the binder phase has received extensive attention due to its excellent high temperature strength and high temperature oxidation resistance. In this paper, WC-TiC-Ni3Al-CaF2 graded self-lubricating material and tools were prepared by microwave heating method, and its microstructure, mechanical properties and cutting performance were studied. Results show that gradient self-lubricating material can be quickly prepared by microwave heating technology, and the strength is equivalent to that of conventional heating technology. CaF2 not only plays a role in self-lubrication, but also refines the grain of the material. A reasonable gradient design can improve the mechanical properties of the material. When the gradient distribution exponent is n1 = 2, the material has high mechanical properties. Cutting experiments show that the WC-TiC-Ni3Al-CaF2 functional gradient self-lubricating tool has better cutting performance than the homogeneous WC-TiC-Ni3Al hard alloys.


Author(s):  
Xin Tong ◽  
Yanxiang Ren ◽  
Jianing Shen ◽  
Song Yu

Most of the researches on the properties of micro-textured tools are based on an orthogonal test, while the interaction between micro-textured parameters is ignored. Therefore, this thesis is based on an interaction test to study the cutting performance of cutting tools. According to the chip morphology obtained from the interactive test, the micro texture diameter of 60 μm is obtained when the cutting is stable. It was also found that the synergistic effect of multiple mesoscopic geometric features had a significant influence on cutting performance. By analysis, we found the optimized parameters for the milling tool were D = 60 μm, l = 100 μm, l1 = 150 μm, r = 60 μm. Furthermore, prediction models of the cutting performance were established by univariate linear regression and the validity of these models was verified. Thus, this thesis provides a reference for improving the performance of cutting tools and for achieving efficient and high-quality machining of titanium alloys.


2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.


2007 ◽  
Vol 534-536 ◽  
pp. 1089-1092
Author(s):  
Mituyoshi Nagano ◽  
Hideaki Sano ◽  
Shigeya Sakaguchi ◽  
Guo Bin Zheng ◽  
Yasuo Uchiyama

The effect of oxygen addition on oxidation behavior of the β-Si3N4 ceramics with 5 mass% Y2O3 and 2 or 4 mass% Al2O3 was investigated by performing oxidation tests in air at 1300° to 1400°C and cutting performance tests. These tests were intended to clarify their ware resistance as cutting tools. The results of mass change, SEM observation and composition analysis of the specimens before and after oxidation test showed that as the Al2O3 content in the β-Si3N4 ceramics increased, mass changes resulted higher oxidation during which process pores and cracks formed due to the release of N2 gas. The values of hardness and bending strength of the specimens with relatively small amount of 2 mass% Al2O3, which formed solid solution in the Si3N4 structure [Si6-zAlzOzN8-z (z = 0.1)], showed larger than those of the specimen with 4 mass% Al2O3 (z = 0.2). The specimens group added with Al2O3 of 2 mass% (Z = 0.1) also showed high wear resistance. From this, we could conclude that the mechanical properties of β-Si3N4 ceramics depending on oxygen introduction is much effective on cutting performance improvements of the cutting performance of β-Si3N4 ceramics.


2021 ◽  
Vol 40 (1) ◽  
pp. 77-86
Author(s):  
Siwen Tang ◽  
Pengfei Liu ◽  
Zhen Su ◽  
Yu Lei ◽  
Qian Liu ◽  
...  

Abstract Al2O3 nano-scaled coating was prepared on micro-textured YT5 cemented carbide cutting tools by atomic layer deposition ALD. The effect of Al2O3 nano-scaled coating, with and without combined action of texture, on the cutting performance was studied by orthogonal cutting test. The results were compared with micro-textured cutting tool and YT5 cutting tool. They show that the micro-texture and nano-scaled Al2O3 coated on the micro-texture both can reduce the cutting force and friction coefficient of the tool, and the tools with nano-scaled Al2O3 coated on the micro-texture are more efficient. Furthermore, the friction coefficient of the 100 nm Al2O3-coated micro-texture tool is relatively low. When the distance of the micro-pits is 0.15 mm, the friction coefficient is lowest among the four kinds of pit textured nanometer coating tools. The friction coefficient is the lowest when the direction of the groove in strip textured nanometer coating tool is perpendicular to the main cutting edge. The main mechanism of the nanometer Al2O3 on the micro-textured tool to reduction in cutting force and the friction coefficient is discussed. These results show that the developed tools effectively decrease the cutting force and friction coefficient of tool–chip interface.


2021 ◽  
Vol 16 (1) ◽  
pp. 43-48
Author(s):  
Michal Krbaťa ◽  
◽  
Jana Escherová ◽  

The paper deals with the change in mechanical properties and wear of 1.2842 universal tool steel after plasma nitriding, which is widely used to produce cutting tools with good durability and low operating costs. Plasma nitriding was performed at a temperature of 500 °C for 10-hour period in a standard N2 /H2 atmosphere with 1:3 gases ratio. Microstructure, phase structure, thickness of a nitriding layer and surface roughness of samples were measured with optical microscopes and a profilometer. Verification of a chemical composition was carried out on the BAS TASMAN Q4 device. Wear resistance was measured on a universal TRIBOLAB UTM 3 tribometer, through a, “pin on disc“ method. The results of experiments have shown that plasma nitriding process, significantly improves the mechanical and tribological properties of selected materials.


Sign in / Sign up

Export Citation Format

Share Document