Cross sectional complex structure analysis is a key issue of thin film research: A case study on the preferential orientation crossover in TiN thin films

2019 ◽  
Vol 688 ◽  
pp. 137478 ◽  
Author(s):  
P.B. Barna ◽  
D. Biro ◽  
M.F. Hasaneen ◽  
L. Székely ◽  
M. Menyhárd ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1494
Author(s):  
Mustapha El Hariri El Nokab ◽  
Khaled O. Sebakhy

Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1802
Author(s):  
Dan Liu ◽  
Peng Shi ◽  
Yantao Liu ◽  
Yijun Zhang ◽  
Bian Tian ◽  
...  

La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure phase, and their crystallinities increased with the post-annealing temperature from 800 °C to 1000 °C, while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 °C. The surface images indicated that the grain size increased first and then decreased, and the maximum size was 0.71 μm at 1100 °C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films decreased significantly above 1000 °C, which was mainly due to the evaporation of Sr2+ and Cr3+. At the same time, the maximum conductivity was achieved for the film annealed at 1000 °C, which was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/°C was obtained for the 0.2LSCO thin film post-annealed at 1100 °C. Through post-annealing optimization, the best post-annealing temperature was 1000 °C, which made the 0.2LSCO thin film more stable to monitor the temperatures of turbine engines for a long period of time.


2011 ◽  
Vol 5 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Maja Popovic ◽  
Mirjana Novakovic ◽  
Zlatko Rakocevic ◽  
Natasa Bibic

In this work, the effects of 120 keV Ar+ ion implantation on the structural properties of TiN thin films were investigated. TiN layers were deposited by d.c. reactive sputtering on Si(100) wafers at room temperature or at 150?C. The thickness of TiN layers was ~240 nm. After deposition the samples were irradiated with 120 keV argon ions to the fluencies of 1?1015 and 1?1016 ions/cm2. Structural characterization was performed with Rutherford backscattering spectroscopy (RBS), cross-sectional transmission electron microscopy (XTEM), grazing angle X-ray diffraction (XRD) and atomic force microscopy (AFM). It was found that the argon ion irradiation induced the changes in the lattice constant, mean grain size, micro-strain and surface morphology of the TiN layers. The observed micro-structural changes are due to the formation of the high density damage region in the TiN thin film structure.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1418
Author(s):  
Yi-Jun Jen ◽  
Wei-Chieh Ma ◽  
Ting-Yen Lin

TiN thin films were obliquely bideposited with different subdeposit thicknesses. The morphology of the bideposited film was varied from a nano-zigzag array to a vertically grown columnar structure by reducing the subdeposit thickness. The principal index of refraction and extinction coefficient were obtained to explain the measured reflectance and transmittance spectra. The loss of the bideposited thin film decreased as the thickness of the subdeposit decreased. The principal indices for normal incidence were near or under unity, indicating the low reflection by the bideposited thin films. A TiN film with a subdeposit thickness of 3 nm demonstrated an average index of refraction of 0.83 and extinction coefficient of below 0.2 for visible wavelengths. The retrieved principal refractive indexes explained the anisotropic transmission and reflection. For most normal incident cases, the analysis offers the tunable anisotropic property of a TiN nanostructured film for multilayer design in the future.


1996 ◽  
Vol 11 (12) ◽  
pp. 2951-2954 ◽  
Author(s):  
J. G. Wen ◽  
S. Mahajan ◽  
H. Ohtsuka ◽  
T. Morishita ◽  
N. Koshizuka

Highly in-plane aligned α-axis YBa2Cu3O7−x thin films deposited on (100) LaSrGaO4 substrates by a self-template method were studied by high-resolution electron microscopy along three orthogonal 〈100〉 axes of the substrate. Plan-view images confirm that the majority of the film preferentially aligns across the entire substrate except for very few misaligned domains with average size 10 nm2. Cross-sectional images along the [100] orientation of YBa2Cu3O7−x reveal that in-plane aligned α-axis YBa2Cu3O7−x is grown on a template layer dominated by c-axis oriented film. This strongly suggests that the in-plane alignment of α-axis YBa2Cu3O7−x thin films on (100) LaSrGaO4 substrates is governed by the different stresses along the b and c axes of the substrate. Cross-sectional images along [001] of the YBa2Cu3O7—x thin film reveal that the 90° domains easily nucleate in the region between α-axis YBa2Cu3O7—x and the YBa4Cu3Ox phase. Cracks along the (001) plane of YBa2Cu3O7−x are found to be due to the large mismatch between the c parameters of the thin film and substrate.


2017 ◽  
Vol 904 ◽  
pp. 120-124
Author(s):  
Hao Yu Chu ◽  
Yu Xiong Li ◽  
Cheng Yan Gu ◽  
Chun Ping Jiang

In this work, different thick TiN thin films were prepared by pulsed laser deposition on GaN substrates at 650°C. The crystal structure and morphology are characterized by X-ray Diffraction and Atomic Force Microscopy. We characterized the sample by cathodoluminescence spectroscopy at room temperature and measured the thickness of the film by a cross-sectional scanning electron microscopy. Combining the attenuation of light intensity and the thickness, the absorption coefficient of the samples can be estimated by the Beer-Lambert law. The absorption coefficients of TiN metal thin film obtained here are closed with each other. The optical properties may not change with increasing thickness.


2009 ◽  
Vol 79-82 ◽  
pp. 573-576 ◽  
Author(s):  
Jyh Wei Lee ◽  
Zhi Fan Zeng ◽  
Chaur Jeng Wang

The Cr-Cu-N nanocomposite thin films with copper contents ranging from 1.6 to 24.1 at.% were deposited on silicon wafer substrates using a bipolar asymmetry pulsed DC reactive magnetron sputtering system. A dense and compact structure was observed for the thin film containing higher than 10.2 at.% Cu, whereas columnar structures were revealed on the coatings with less than 10.2 at.% Cu. Heat treatments of the as-deposited thin films were held in a vacuum tube furnace at 400, 450 and 500oC for 30 minutes, respectively. It was observed that the copper atoms would diffuse to the surface to form oxide particles on the coating contained higher Cu content after heating higher than 450oC. The quantity and size of the oxide particles increased with increasing heating temperature and Cu content in the thin film. The hardness of coatings increased after heating except #D thin film containing 24.1 at.% Cu, which the softening effect was found after heating at 500oC. A granular and less dense cross-sectional morphology was observed on #D coating after heat treating at 500oC, which was responsible for the lower hardness of thin film.


Author(s):  
C.C. Chama

Substantiation of a technique earlier employed in determining stress in Copper-Silver thin films at very low temperatures is presented. It is shown that the stress measured at elevated temperatures using Stoney’s equation can be utilized in the determination of stress at very low temperatures. To demonstrate the application of this technique, a case study has been conducted by utilizing stress hysteresis curves obtained from the Cu-6at%Ag thin film heated from room temperature to 400°C and cooled back to room temperature in two cycles. The stresses in the Cu-6at%Ag thin film at various low temperatures up to-197°C have been determined by utilizing data from high temperature stress hysteresis curves.


1997 ◽  
Vol 476 ◽  
Author(s):  
Wei-Tsu Tseng ◽  
Li-Wen Chen ◽  
G.-C. Tu

AbstractVariations in stress and grain size of Ti- and TiN- capped Al thin films passivated by fluorinated silicon dioxide (SiOF) during repetitive thermal cycling are investigated. The amount of stress relaxation, elastic and plastic behavior of these thin film structures are compared. Ti and TiN cap layers strengthen the single Al film significantly while the presence of SiOF induces plastic deformation of metal layers. Less grain growth is associated with a dielectric passivated Al film. The penetration of fluorine into Al upon annealing can be reduced by a TiN barrier layer.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
E. Penilla ◽  
J. Wang

Nitrogen-rich titanium nitride (TiN) thin films containing excess nitrogen up to 87.0 at.% were produced on (100) Si substrates via the reactive magnetron DC-sputtering of a commercially available 99.995 at.% pure Ti target within an argon-nitrogen (Ar-N2) atmosphere with a 20-to-1 gas ratio. The process pressure (PP) and substrate temperature (TS) at which deposition occurred were varied systematically between 0.26 Pa–1.60 Pa and between15.0∘C–600∘C, respectively, and their effects on the chemical composition, surface morphology, and preferred orientation were characterized by energy dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). The EDS analysis confirms increasing nitrogen content with increasingPPandTS. The SEM images reveal a uniform and crystallized surface morphology as well as a closely packed cross-sectional morphology for all crystalline films and a loosely packed cross-sectional morphology for amorphous films. Films produced at lowerPPandTShave a pyramidal surface morphology which transitions to a columnar and stratified structure asPPandTSincrease. The XRD analysis confirms the existence of only theδ-TiN phase and the absence of other nitrides, oxides, and/or sillicides in all cases. It also indicates that at lowerPPandTS, the preferred orientation relative to the substrate is along the (111) planes, and that it transitions to a random orientation along the (200), (220), and (311) planes asPPandTSincrease and these results correlate with and qualify those observed by SEM.


Sign in / Sign up

Export Citation Format

Share Document