scholarly journals RA-Noggin beads induce TBX22, a frontonasal mass-specific gene in the maxillary prominence, however over-expression causes clefting rather than a transformation in identity

2009 ◽  
Vol 331 (2) ◽  
pp. 526-527
Author(s):  
Joy M. Richman ◽  
Norihisa Higashihori ◽  
Marcela Buchtová ◽  
Suresh Nimmagadda
Author(s):  
Hongrui Zhang ◽  
Weiwei Chen ◽  
Xinyi Wang ◽  
Yongquan Li ◽  
Zhenhong Zhu

The purpose of this study is to explore the function of MarR-family regulator slnO. In addition, the high-yield strain of salinomycin was constructed by using combined regulation strategies. Firstly the slnO gene over-expression strain (GO) was constructed in Streptomyces albus. Compared to wild type (WT) strain,salinomycin production in GO strain was increased about 28%. Electrophoretic mobility gel shift assays (EMSAs) confirmed that SlnO protein can bind specifically to the intergenic region of slnN-slnO, slnQ-slnA1 and slnF-slnT. qRT-PCR experiments also showed that slnA1, slnF, and slnT1 were significantly up-regulated, while the expression level of the slnN gene was down-regulated in GO strain. Secondly, slnN gene deletion strain (slnNDM) was used as the starting strain, and the pathway specific gene slnR in salinomycin gene cluster was over expressed in slnNDM. The new strain was named ZJUS01. The yield of salinomycin in ZJUS01 strain was 25% and 56% higher than that in slnNDM strain and WT strain. Above results indicate that the slnO gene has a positive regulation effect on the biosynthesis of salinomycin. Meanwhile, the yield of salinomycin could be greatly increased by manipulating multiple transcriptional regulations.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1692-1692
Author(s):  
Sandra Heesch ◽  
Stefan Schwartz ◽  
Isabelle Bartram ◽  
Cornelia Schlee ◽  
Annette Sindram ◽  
...  

Abstract Abstract 1692 Background: Acute leukemias of ambiguous lineage account for only 3–5% of all cases of acute leukemia and represent a heterogeneous group of rare, poorly characterized leukemia with adverse outcome. The aim of this study was to further molecularly characterize this rare subtype to gain insights into the pathogenesis of acute undifferentiated leukemia (AUL) and biphenotypic acute leukemia (BAL). These molecular insights may then lead to targeted treatment strategies for specific molecular subgroups. Design and Methods: The European Group for Immunologic Classification of Leukemia (EGIL) defines BAL as a single blast population with co-expression of myeloid- and lymphoid-associated antigens according to a scoring system. Cases without expression of lineage-specific antigens are designated as AUL. Based on the EGIL scoring system, we identified 11 and 20 adults with newly diagnosed AUL and BAL, respectively. In all samples, flow cytometry was performed using a panel of monoclonal antibodies for precursor cells (CD34, TdT), lymphoid-associated antigens, including surface and cytoplasmic antigens (CD79a, CD22, IgM, CD19, CD20, CD10, CD24, CD3, TCR, CD2, CD5, CD8, CD7, CD1a), and myeloid-associated antigens including myeloperoxidase, CD13, CD33, CD65s, CD117, CD14, CD15, CD64. In order to further molecularly characterize AUL and BAL, samples were studied for expression and genotype alterations of candidate genes with prognostic impact or with relevance in the pathogenesis of acute leukemias. The mRNA expression levels of BAALC, IGFBP7, MN1, and WT1 were determined by quantitative real-time PCR. In addition, samples were studied for WT1 mutations in exons 7 and 9, for FLT3 mutations [internal tandem duplications (ITD) and mutations in the tyrosine kinase domain (TKD835)], as well as for BCR-ABL (breakpoints: e1/a2; b3/a2; b2/a2) and MLL-AF4 rearrangements. Results were than compared to data generated from acute myeloid leukemia (AML; n = 75), acute T-lymphoblastic leukemia (T-ALL; n = 242) and B-precursor ALL (n = 368) patients. Results: AUL patients were characterized by a specific gene expression pattern. In particular, in AUL over-expression was shown for IGFBP7 (P = 0.01) and MN1 (P = 0.04) compared to BAL; for BAALC (P = 0.001), IGFBP7 (P = 0.0001) and MN1 (P = 0.02) compared to T-ALL; for BAALC (P = 0.02) and IGFBP7 (P = 0.001) compared to AML; as well as for IGFBP7 (P = 0.0001) compared to B-precursor ALL. Genotype alterations (WT1, FLT3, BCR-ABL, MLL-AF4) were not detectable in AUL samples. The majority of BAL cases expressed either T-lineage plus myeloid antigens (n = 9; 45%) or B-lineage plus myeloid markers (n = 9; 45%), while co-expression of T/B lymphoid antigens was only seen in 2 samples of BAL. Cell surface expression of CD34 (≥ 20%) was most frequently found in BAL (17 of 20 cases; 85%). Gene expression studies revealed over-expression of BAALC and IGFBP7 in BAL compared to T-ALL, AML and B-precursor ALL, but less pronounced as shown for AUL. Moreover, BAL samples were characterized by frequent WT1 mutations in exon 7 (sufficient DNA was available in 14 samples of which 4 had WT1 mutations; 29%). In contrast, WT1 mutations were only found in 8% of T-ALL and have previously been reported in about 10% of AML patients with normal cytogenetics (Paschka et al, 2008). In concordance with published data, the BCR-ABL fusion gene was detected in 32% of BAL samples (19 samples studied of which 9 were positive for BCR-ABL). MLL-AF4 translocations and FLT3 mutations were not detectable in this BAL cohort. Conclusion: Here we present a comprehensive molecular study investigating mRNA expression and genotype alterations in the poorly characterized subgroup of acute leukemias with ambiguous or lacking lineage commitment. We show that AUL and BAL patients share important prognostic features of both myeloid and lymphoid leukemias. Over-expression of stem cell associated genes (BAALC and IGFBP7) and genes associated with an adverse prognosis (BAALC and MN1) was most prominent in AUL. As lineage-directed therapies are likely ineffective for these high-risk patients and the fact that AUL lack known specific molecular targets, further studies are warranted to unravel molecular aberrations, which might allow the development of more specific therapies. BAL patients however, were characterized by genetic aberrations including BCR-ABL rearrangements and WT1 mutations, which may imply targeted therapy options. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 50-50
Author(s):  
Y. Terry Lee ◽  
Colleen Byrnes ◽  
Jaira F. de Vasconcellos ◽  
Megha Kaushal ◽  
Antoinette Rabel ◽  
...  

Abstract LIN28 proteins bind to RNA and regulate developmental timing events in multicellular organisms, in part, by reducing cellular levels of the let-7 family of microRNAs. High-level LIN28 expression in stem cells promotes their self-renewal. Over-expression of the LIN28 proteins causes suppression of let-7 in hematopoietic stem and early progenitor cell populations (CD34+) from adult donors and manifests a more fetal-like phenotype in the erythroid lineage. Here we explore LIN28expression that is restricted to erythroid cells, rather than stem or multi-potential progenitor cells. For this purpose, lentiviral transduction vectors were produced with LIN28A expression driven by erythroid-specific gene promoter regions of the human KLF1 or SPTA1 genes, as well as an internal ribosomal entry site for puromycin selection (vectors: KLF1-LIN28A-OE and SPTA1-LIN28A-OE). Viral supernatants from these constructs were compared with empty-vector controls in matched transductions of CD34+ cells from three adult human volunteers. The cells were transduced and cultured using a three-phase, serum-free model for ex vivo erythropoiesis. Erythroblast proliferation and differentiation were comparable between control and LIN28-transduced cells assessed by cell counting and flow cytometry with staining for CD71, glycophorin A and thiazole orange. To validate restricted expression of LIN28 in the erythroid lineage, colony formation assays were performed in semisolid methylcellulose containing 1.0 ug/ml puromycin. BFU-E, CFU-GM, CFU-G, CFU-M and GEMM colonies were enumerated 14 days after plating. Puromycin addition to KLF1-LIN28A-OE and SPTA1-LIN28A-OE transductions resulted in selection of the erythroid colonies (BFU-E as a percentage of total colonies: Control: 44.6 ± 6.1%; KLF1-LIN28A-OE: 98.4 ± 0.7%, p=0.003; SPTA1-LIN28A-OE: 95.2 ± 1.1%, p=0.005). LIN28A over-expression was confirmed by RT-QPCR (KLF1-LIN28A-OE: 2.1E+05 ± 7.0E+04 copies/ng; SPTA1-LIN28A-OE: 2.2E+05 ± 8.3E+04 copies/ng; Controls: below detection limits) and Western analyses after transduction. Suppression of all let-7 miRNA family members to less than 30% control levels were detected for both vectors resulting in a reduction in total let-7 miRNA (RT-QPCR: Control: 2.0E+07 ± 9.7E+05 copies/ng; KLF1-LIN28A-OE: 5.6E+06 ± 5.6E+05 copies/ng, p=0.003; SPTA1-LIN28A-OE: 4.6E+06 ± 6.2E+05 copies/ng, p=0.003). BCL11A expression levels were also measured by RT-QPCR and Western analyses. While BCL11A showed no significant change at the mRNA level (Control: 1.2E+03 ± 4.5E+02 copies/ng; KLF1-LIN28A-OE: 2.9E+02 ± 7.4E+01 copies/ng, p=0.07; SPTA1-LIN28A-OE: 4.2E+02 ± 3.3E+02 copies/ng, p=0.07), protein analyses of nuclear BCL11A showed moderately reduced levels after KLF1-LIN28A-OE and SPTA1-LIN28A-OE transductions. Globin mRNA and protein levels were investigated and compared with controls. Gamma-globin mRNA was significantly increased in LIN28A-OE samples (Control: 3.6E+06 ± 8.2E+05 copies/ng; KLF1-LIN28A-OE: 1.9E+07 ± 1.7E+06 copies/ng, p=0.007; SPTA1-LIN28A-OE: 1.7E+07 ± 8.9E+05 copies/ng, p=0.003). Fetal hemoglobin (HbF) production was measured at the end of the culture period using High Performance Liquid Chromatography, and was increased in the KLF1-LIN28A-OE and SPTA1-LIN28A-OE samples compared to the control (Control: 7.0 ± 1.4%; KLF1-LIN28A-OE: 31.9 ± 2.7%, p=0.004; SPTA1-LIN28A-OE: 43.0 ± 6.2%, p=0.004). Flow cytometry analyses demonstrated a pan-cellular HbF distribution. In contrast to promoting self-renewal in stem cells, these data suggest that adult erythroblast-restricted LIN28 functions to partially reverse the fetal-to-adult developmental transition in hemoglobin expression. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stéphanie Bibert ◽  
Nicolas Guex ◽  
Joao Lourenco ◽  
Thomas Brahier ◽  
Matthaios Papadimitriou-Olivgeris ◽  
...  

The reason why most individuals with COVID-19 have relatively limited symptoms while other develop respiratory distress with life-threatening complications remains unknown. Increasing evidence suggests that COVID-19 associated adverse outcomes mainly rely on dysregulated immunity. Here, we compared transcriptomic profiles of blood cells from 103 patients with different severity levels of COVID-19 with that of 27 healthy and 22 influenza-infected individuals. Data provided a complete overview of SARS-CoV-2-induced immune signature, including a dramatic defect in IFN responses, a reduction of toxicity-related molecules in NK cells, an increased degranulation of neutrophils, a dysregulation of T cells, a dramatic increase in B cell function and immunoglobulin production, as well as an important over-expression of genes involved in metabolism and cell cycle in patients infected with SARS-CoV-2 compared to those infected with influenza viruses. These features also differed according to COVID-19 severity. Overall and specific gene expression patterns across groups can be visualized on an interactive website (https://bix.unil.ch/covid/). Collectively, these transcriptomic host responses to SARS-CoV-2 infection are discussed in the context of current studies, thereby improving our understanding of COVID-19 pathogenesis and shaping the severity level of COVID-19.


2008 ◽  
Vol 5 (25) ◽  
pp. 909-918 ◽  
Author(s):  
Y Inoue ◽  
H Fujimoto ◽  
T Ogino ◽  
H Iwata

A transfection array, which is specifically developed for use in high-throughput analyses of genome functions by the over-expression or suppression of genes on a chip, is expected to become an important method for post-genome research. High efficiency of gene expression or suppression is indispensable for high-throughput analyses because the adherent cell number on a single spot decreases as the density of spots increases in the transfection array. We have studied an electro-stimulated pore formation on the cell membrane for gene delivery. Fine pores should be formed on the cell membrane to increase the efficiency of gene transfection without cell damage. Herein, we examined the electrode carrying chemically functionalized carbon nanotubes (CNTs) on the surface. The CNTs were loaded on a gold electrode with a self-assembled monolayer membrane by electrostatic interaction. Adsorbed plasmid DNA was transfected with higher efficiency into adherent cells on the CNT-loaded electrode than on an electrode without CNTs. This result may be due to the strong but fine field emission formed from the tips of the CNTs.


2021 ◽  
Vol 22 ◽  
Author(s):  
Danishuddin Danish ◽  
Naidu Subbarao ◽  
Mohd Khan ◽  
Sultan Alouffi ◽  
Shahper Khan

: Over the past several years, remarkable progress towards the recognition of new therapeutic targets in tumor cells has led to the discovery and development of newer scaffold of anti-tumor drugs. The exploration and exploitation of epigenetic regulation in tumor cells is of immense importance to both the pharmaceutical and academic biomedical literatures. Epigenetic mechanisms are indispensable for normal development and maintenance of tissue-specific gene expression. Disruption of epigenetic processes to eradicate tumor cells is among the most promising intervention for cancer control. Polycomb repressive complex 2 (PRC2), a complex that methylates lysine 27 of histone H3 to promote transcriptional silencing, is involved in orchestrating significant pathways in a cell. Over expression of PRC2 has been found in a number of cancerous malignancies, making a major target for anti-cancer therapy. Despite its well-understood molecular mechanism, hyperactivation and drug resistance mutations in its subunits has become a matter of discussion. This review outlines the current understanding of the components of PRC2 in active complex formation and assesses their potential as a promising therapeutic target for cancer therapy. We also review the effects of mutations in the PRC2 components, in purview of human cancers. Finally, we discuss some of the current challenges for therapeutic drug designs targeting PRC2 complex.


2012 ◽  
Vol 10 (3) ◽  
pp. 455-462 ◽  
Author(s):  
V. Pietropaolo ◽  
C. Passariello ◽  
A. Bellizzi ◽  
A. Virga ◽  
E. Anzivino ◽  
...  

Infertility is a problem afflicting about 1/6 couples, and in 40% of cases this is primarily due to the male. Male infertility is a multifactorial pathology and it seems mainly related to sperm motility or sperm number. However, a diagnosis of infertility is frequently not followed by a precise explanation of its cause, reflecting our poor understanding of the spermatogenesis-related regulatory mechanisms and gene expression profiles. Therefore, this study was design to investigate the relative gene expression of a specific gene profile in ejaculate spermatozoa of men affected by infertility. This profile included 13 mitochondrial gene encoding subunits of respiratory chain and 7 nuclear sperm motility-related genes. We used values of progressive sperm motility (PR) to separate subjects affected by infertility into two groups, showing PR values higher (H group) or lower (L group) than the mean of the sample, and to classify fertile men (control group). We did not obtain a statistically significant difference in nuclear gene expression patterns in spermatozoa among these three groups. On the other hand, we observed an over-expression in 11/13 tested mitochondrial genes in the population of infertile males with altered sperm motility compared to the control group. This over-expression led us to speculate that there is an abnormal mRNA transcription of these 11 subunits, that impaired the normal energy supply ensuring sperm motility. Regarding the under-expression of 2/13 tested mitochondrial genes, we could assume that the spermatozoa mtDNA has accumulated mutations involving these two genes (CYB and ND4L). In conclusion, our results will provide useful information for the development of molecular diagnostic tools for clinical assessment of sperm health. However, further investigation into other sperm-related genes is needed to establish their roles in male fertility.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


Sign in / Sign up

Export Citation Format

Share Document