scholarly journals On the aerodynamic forces on heaving and pitching airfoils at low Reynolds number

2017 ◽  
Vol 828 ◽  
pp. 395-423 ◽  
Author(s):  
M. Moriche ◽  
O. Flores ◽  
M. García-Villalba

The influence that the kinematics of pitching and heaving 2D airfoils has on the aerodynamic forces is investigated using direct numerical simulations and a force decomposition algorithm. Large-amplitude motions are considered (of the order of one chord), with moderate Reynolds numbers and reduced frequencies of order $O(1)$, varying the mean pitch angle and the phase shift between the pitching and heaving motions. Our results show that the surface vorticity contribution (viscous effect) to the aerodynamic force is negligible compared with the contributions from the body motion (fluid inertia) and the vorticity within the flow (circulation). For the range of parameters considered here, the latter tends to be instantaneously oriented in the direction normal to the chord of the airfoil. Based on the results discussed in this paper, a reduced-order model for the instantaneous aerodynamic force is proposed, taking advantage of the force decomposition and the chord-normal orientation of the contribution from vorticity within the flow to the total aerodynamic force. The predictions of the proposed model are compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the mean thrust, and a smaller improvement in the prediction of the mean lift and the instantaneous force coefficients.

2002 ◽  
Vol 205 (16) ◽  
pp. 2413-2427 ◽  
Author(s):  
Mao Sun ◽  
Jian Tang

SUMMARYThe lift and power requirements for hovering flight in Drosophila virilis were studied using the method of computational fluid dynamics. The Navier-Stokes equations were solved numerically. The solution provided the flow velocity and pressure fields, from which the unsteady aerodynamic forces and moments were obtained. The inertial torques due to the acceleration of the wing mass were computed analytically. On the basis of the aerodynamic forces and moments and the inertial torques, the lift and power requirements for hovering flight were obtained.For the fruit fly Drosophila virilis in hovering flight (with symmetrical rotation), a midstroke angle of attack of approximately 37°was needed for the mean lift to balance the insect weight, which agreed with observations. The mean drag on the wings over an up- or downstroke was approximately 1.27 times the mean lift or insect weight (i.e. the wings of this tiny insect must overcome a drag that is approximately 27 % larger than its weight to produce a lift equal to its weight). The body-mass-specific power was 28.7 W kg-1, the muscle-mass-specific power was 95.7 W kg-1 and the muscle efficiency was 17 %.With advanced rotation, larger lift was produced than with symmetrical rotation, but it was more energy-demanding, i.e. the power required per unit lift was much larger. With delayed rotation, much less lift was produced than with symmetrical rotation at almost the same power expenditure; again, the power required per unit lift was much larger. On the basis of the calculated results for power expenditure, symmetrical rotation should be used for balanced, long-duration flight and advanced rotation and delayed rotation should be used for flight control and manoeuvring. This agrees with observations.


2021 ◽  
Vol 11 (20) ◽  
pp. 9517
Author(s):  
Buchen Wu ◽  
Geng Xue ◽  
Jie Feng ◽  
Shujin Laima

To investigate the aerodynamic characteristics of a twin-box girder in turbulent incoming flow, we carried out wind tunnel tests, including two aerodynamic interferences: leading body-height grid, and leading circular cylinder. In this study, the pressure distribution and the mean and fluctuating aerodynamic forces with the two interferences are compared with bare deck in detail to investigate the relationship between aerodynamic characteristics and the incoming flow characteristics (including Reynolds number and turbulence intensity). The experimental results reveal that, owing to the body-height flow characteristics around the deck interfered with by the body-height grid, the disturbed aerodynamic characteristics of the twin-box girder differ considerably from those of the bare twin-box girder. At the upstream girder, due to the vortex emerging from the body-height grid breaking the separation bubble, pressure plateaus in the upper and lower surface are eliminated. In addition, the turbulence generated by the body-height grid reduces the Reynolds number sensitivity of the twin-box girder. At a relatively high Reynolds number, the fluctuating forces are mainly dominated by turbulence intensity, and the time-averaged forces show almost no change under high turbulence intensity. At a low Reynolds number, the time-averaged forces change significantly with the turbulence intensity. Moreover, at a low Reynolds number, the wake of the leading cylinder effectively forces the boundary layer to transition to turbulence, which reduces the Reynolds number sensitivity of the mean aerodynamic forces and breaks the separation bubbles. Additionally, the fluctuating drag force and the fluctuating lift force are insensitive to the diameter and the spacing ratio.


2001 ◽  
Vol 204 (15) ◽  
pp. 2607-2626 ◽  
Author(s):  
Sanjay P. Sane ◽  
Michael H. Dickinson

SUMMARYWe used a dynamically scaled mechanical model of the fruit fly Drosophila melanogaster to study how changes in wing kinematics influence the production of unsteady aerodynamic forces in insect flight. We examined 191 separate sets of kinematic patterns that differed with respect to stroke amplitude, angle of attack, flip timing, flip duration and the shape and magnitude of stroke deviation. Instantaneous aerodynamic forces were measured using a two-dimensional force sensor mounted at the base of the wing. The influence of unsteady rotational effects was assessed by comparing the time course of measured forces with that of corresponding translational quasi-steady estimates. For each pattern, we also calculated mean stroke-averaged values of the force coefficients and an estimate of profile power. The results of this analysis may be divided into four main points.(i) For a short, symmetrical wing flip, mean lift was optimized by a stroke amplitude of 180° and an angle of attack of 50°. At all stroke amplitudes, mean drag increased monotonically with increasing angle of attack. Translational quasi-steady predictions better matched the measured values at high stroke amplitude than at low stroke amplitude. This discrepancy was due to the increasing importance of rotational mechanisms in kinematic patterns with low stroke amplitude.(ii) For a 180° stroke amplitude and a 45° angle of attack, lift was maximized by short-duration flips occurring just slightly in advance of stroke reversal. Symmetrical rotations produced similarly high performance. Wing rotation that occurred after stroke reversal, however, produced very low mean lift.(iii) The production of aerodynamic forces was sensitive to changes in the magnitude of the wing’s deviation from the mean stroke plane (stroke deviation) as well as to the actual shape of the wing tip trajectory. However, in all examples, stroke deviation lowered aerodynamic performance relative to the no deviation case. This attenuation was due, in part, to a trade-off between lift and a radially directed component of total aerodynamic force. Thus, while we found no evidence that stroke deviation can augment lift, it nevertheless may be used to modulate forces on the two wings. Thus, insects might use such changes in wing kinematics during steering maneuvers to generate appropriate force moments.(iv) While quasi-steady estimates failed to capture the time course of measured lift for nearly all kinematic patterns, they did predict with reasonable accuracy stroke-averaged values for the mean lift coefficient. However, quasi-steady estimates grossly underestimated the magnitude of the mean drag coefficient under all conditions. This discrepancy was due to the contribution of rotational effects that steady-state estimates do not capture. This result suggests that many prior estimates of mechanical power based on wing kinematics may have been grossly underestimated.


1988 ◽  
Vol 32 (03) ◽  
pp. 208-219 ◽  
Author(s):  
P. Wilmott

A slender axisymmetric body is submerged beneath a regular train of waves on an inviscid, incompressible, infinitely deep fluid. Using the method of matched asymptotic expansions, the velocity potential in the neighborhood of the body is calculated, thus determining the mean second-order vertical force when the body is permitted to respond to the exciting forces and moment but is otherwise moving with constant forward speed and depth beneath a head sea. To stablilize the body motion, the effects of a hydrofoil placed on the body axis are included. Several examples are computed showing the dependence of mean vertical force on body velocity.


2019 ◽  
Vol 22 (7) ◽  
pp. 496-501
Author(s):  
Fatemeh Ahmadi-Motamayel ◽  
Parisa Falsafi ◽  
Hamidreza Abolsamadi ◽  
Mohammad T. Goodarzi ◽  
Jalal Poorolajal

Background: Cigarette smoke free radicals can cause cellular damage and different diseases. All the body fluids have antioxidants which protect against free radicals. Objective: The aim of this study was to evaluate salivary total antioxidant capacity and peroxidase, uric acid and malondialdehyde levels in smokers and a nonsmoking control group. Methods: Unstimulated saliva was collected from 510 males. A total of 259 subjects were current smokers and 251 were non-smokers. The levels of salivary total antioxidant capacity, uric acid, peroxidase and malondialdehyde were measured using standard procedures. Data were analyzed with t test and ANOVA. Results: The smokers were younger and dental hygiene index was higher than healthy nonsmoking controls. The mean total antioxidant capacity in smokers and nonsmokers was 0.13±0.07 and 0.21±011, respectively (P=0.001). Smokers had significantly lower peroxidase and uric acid levels than healthy controls. In addition, the mean malondialdehyde levels in the smokers and nonsmokers were 4.55 ±2.61 and 2.79 ±2.21, respectively (P=0.001). Conclusion: Cigarette smoke produces free radical and oxidative stress, causing many side effects. Salivary antioxidant levels decreased and malondialdehyde levels increased in smokers, indicating the high oxidative stress among smokers compared to nonsmokers. Cigarette smoke had deleterious effects on main salivary antioxidants levels.


2019 ◽  
Vol 15 (02) ◽  
pp. 14-17
Author(s):  
K K Hadiya ◽  
A J Dhami ◽  
D V Chaudhari ◽  
P M Lunagariya

This study was initiated on 24 prepubertal Holstein x Kankrej crossbred heifers of nearly identical age (7-9 months) and body weight (130-140 kg) at University farm to evaluate the effect of high plane of nutrition on blood biochemical and minerals profile and the age at puberty. Twelve heifers were managed under routine farm feeding (control) and the rest 12 under ideal optimum feeding regime (treatment) that included extra 1 kg concentrate, 30 g min mix and ad-lib dry fodder. The body weight and ovarian ultrasonography together with blood sampling was carried out at monthly interval from 10 to 18 months of age to study the ovarian dynamics and blood biochemical changes. High plane of nutrition to growing heifers was beneficial in reducing the age of onset of puberty (by 2-3 months) compared to routine farm fed group. The mean plasma total protein and cholesterol concentrations showed a rising trend with significant variations from 10 to 16 months of age, where it got mostly stabilized indicating adult profile. The activity of enzymes GOT and GPT also rose gradually and significantly from 10 months till 14-15 months of age, and thereafter it remained more or less static till 18 months of age. The levels of both these enzymes were higher, with lower protein and cholesterol, in control than the treatment group from 15-16 months of age onwards. The mean plasma levels of both calcium and phosphorus increased gradually and significantly with advancing age till 16-17 months of age, with little higher values in supplemented than a control group. The plasma levels of zinc, iron, copper, and cobalt also showed rising trend with significant differences between 10th and 12th-14th months of age, and from 15th to 18th months of age the levels were statistically the same in all the groups with slightly higher values in the treatment group.


Author(s):  
Junji Maeda ◽  
Takashi Takeuchi ◽  
Eriko Tomokiyo ◽  
Yukio Tamura

To quantitatively investigate a gusty wind from the viewpoint of aerodynamic forces, a wind tunnel that can control the rise time of a step-function-like gust was devised and utilized. When the non-dimensional rise time, which is calculated using the rise time of the gusty wind, the wind speed, and the size of an object, is less than a certain value, the wind force is greater than under the corresponding steady wind. Therefore, this wind force is called the “overshoot wind force” for objects the size of orbital vehicles in an actual wind observation. The finding of the overshoot wind force requires a condition of the wind speed recording specification and depends on the object size and the gusty wind speed.


Author(s):  
Johan Roenby ◽  
Hassan Aref

The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between rocking and tumbling motion of the body known in this case. In both instances, the chaos may be detected both in the body motion and in the vortex motion. The effect of increasing body mass at a fixed body shape is to damp the chaos.


2020 ◽  
Vol 36 (1) ◽  
Author(s):  
Ayman Ali Abdel Fattah ◽  
Abdel Hay Rashad Elasy ◽  
Ahmed Helmy Hoseini ◽  
Tarek Abdel Rahman Abdel Hafez

Abstract Background Repair of a perforated tympanic membrane (myringoplasty) can facilitate normal middle ear function, resist infection, and help re-establish normal hearing. Autogenous graft materials are the most popular graft materials used in myringoplasty because of their easy acceptability by the body. This study is conducted to compare between temporalis fascia graft and fascia lata graft in myringoplasty for patients with tubo-tympanic dry perforation. Results A total of 60 patients with persistent dry tympanic membrane perforation were included in our study during the period from January 2018 to May 2020. Patients underwent myringoplasty with temporalis fascia (30 patients as group A) or fascia lata (30 patients as group B). Patients were scheduled for follow-up visits concerning graft status, ear discharge, and audiograms. The mean postoperative air-bone gap in group A was 17.5 ± 4 after 1 month and 8.6 ± 6.9 after 3 months, while in group B, the mean postoperative air-bone gap was 17.6 ± 4.9 after 1 month and 9.4 ± 7.5 after 3 months. There was 90% success in graft uptake in group A, while there was 80% success in group B. Conclusion Using temporalis fascia is still the best and most trustworthy technique of myringoplasty compared to fascia lata graft. However, fascia lata can be a good alternative to temporalis fascia especially in cases of revision myringoplasty, ears having large perforation, or near-total perforation where the chances of residual perforation are high because of the limited margin of remnant tympanic membrane overlapping the graft.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3771
Author(s):  
Alexey Kashevnik ◽  
Walaa Othman ◽  
Igor Ryabchikov ◽  
Nikolay Shilov

Meditation practice is mental health training. It helps people to reduce stress and suppress negative thoughts. In this paper, we propose a camera-based meditation evaluation system, that helps meditators to improve their performance. We rely on two main criteria to measure the focus: the breathing characteristics (respiratory rate, breathing rhythmicity and stability), and the body movement. We introduce a contactless sensor to measure the respiratory rate based on a smartphone camera by detecting the chest keypoint at each frame, using an optical flow based algorithm to calculate the displacement between frames, filtering and de-noising the chest movement signal, and calculating the number of real peaks in this signal. We also present an approach to detecting the movement of different body parts (head, thorax, shoulders, elbows, wrists, stomach and knees). We have collected a non-annotated dataset for meditation practice videos consists of ninety videos and the annotated dataset consists of eight videos. The non-annotated dataset was categorized into beginner and professional meditators and was used for the development of the algorithm and for tuning the parameters. The annotated dataset was used for evaluation and showed that human activity during meditation practice could be correctly estimated by the presented approach and that the mean absolute error for the respiratory rate is around 1.75 BPM, which can be considered tolerable for the meditation application.


Sign in / Sign up

Export Citation Format

Share Document