scholarly journals Tolerability and safety of the intake of bovine milk oligosaccharides extracted from cheese whey in healthy human adults

2017 ◽  
Vol 6 ◽  
Author(s):  
Jennifer T. Smilowitz ◽  
Danielle G. Lemay ◽  
Karen M. Kalanetra ◽  
Elizabeth L. Chin ◽  
Angela M. Zivkovic ◽  
...  

AbstractMechanistic research suggests a unique evolutionary relationship between complex milk oligosaccharides and cognate bifidobacteria enriched in breast-fed infants. Bovine milk oligosaccharides (BMO) were recently identified as structurally and functionally similar to human milk oligosaccharides. The present single-blind three-way crossover study is the first to determine the safety and tolerability of BMO consumption by healthy human participants (n 12) and its effects on faecal microbiota and microbial metabolism. Participants consumed each supplement (placebo-control; low- and high-BMO doses) for eleven consecutive days, followed by a 2-week washout period prior to initiating the next supplement arm. Low and high BMO doses were consumed as 25 and 35 % of each individual's daily fibre intake, respectively. Safety and tolerability were measured using standardised questionnaires on gut and stomach discomfort and stool consistency. Faecal extracts were profiled for bacterial populations by next-generation sequencing (NGS) and bifidobacteria presence was confirmed using quantitative PCR. Urine was analysed for changes in microbial metabolism using nuclear magnetic resonance spectroscopy (1H-NMR). Consumption of both the low and high BMO doses was well tolerated and did not change stool consistency from baseline. Multivariate analysis of the NGS results demonstrated no change in faecal microbiota phyla among the placebo-control and BMO supplement groups. In conclusion, BMO supplementation was well tolerated in healthy adults and has the potential to shift faecal microbiota toward beneficial strains as part of a synbiotic treatment with probiotic cultures that selectively metabolise oligosaccharides.

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1489 ◽  
Author(s):  
Karina Obelitz-Ryom ◽  
Amalie Rendboe ◽  
Duc Nguyen ◽  
Silvia Rudloff ◽  
Anne Brandt ◽  
...  

Oligosaccharides support gut development and bacterial colonization in term infants, but it is unknown if they benefit preterm infants. Using preterm pigs, we investigated effects of bovine milk supplements enriched with oligosaccharides to improve gut development and colonization. Caesarean-delivered preterm pigs (n = 57) were reared for 19 days. The pigs were fed bovine milk supplemented with an oligosaccharide-enriched whey containing sialyllactose, or a heterogeneous oligosaccharide ingredient. To evaluate the influence of artificial rearing, near-term, vaginally born pigs raised by their sow (n = 12) were compared with artificially reared, caesarean-delivered near-term pigs (n = 14). In preterm pigs, the clinical outcome, gut function, gut microbiota, and systemic immunity were similar among dietary treatments. Natural rearing increased growth rates, gut functions, colon short chain fatty acid concentrations and bacterial diversity, relative to artificial rearing. In conclusion, supplements with bovine milk oligosaccharides were well tolerated, but did not improve gut maturation or clinical outcomes in artificially reared preterm piglets. Immaturity at birth, coupled with artificial rearing, may render the neonate unresponsive to the gut-protective effects of milk oligosaccharides. Whether bovine milk oligosaccharides may affect other endpoints (e.g., brain functions) in conditions of immaturity remains to be investigated.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Randall C. Robinson ◽  
Nina A. Poulsen ◽  
Emeline Colet ◽  
Chloe Duchene ◽  
Lotte Bach Larsen ◽  
...  

mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Arvind Venkataraman ◽  
Christine M. Bassis ◽  
James M. Beck ◽  
Vincent B. Young ◽  
Jeffrey L. Curtis ◽  
...  

ABSTRACT DNA from phylogenetically diverse microbes is routinely recovered from healthy human lungs and used to define the lung microbiome. The proportion of this DNA originating from microbes adapted to the lungs, as opposed to microbes dispersing to the lungs from other body sites and the atmosphere, is not known. We use a neutral model of community ecology to distinguish members of the lung microbiome whose presence is consistent with dispersal from other body sites and those that deviate from the model, suggesting a competitive advantage to these microbes in the lungs. We find that the composition of the healthy lung microbiome is consistent with predictions of the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in shaping the microbial community in healthy lungs. In contrast, the microbiome of diseased lungs was readily distinguished as being under active selection. We also assessed the viability of microbes from lung samples by cultivation with a variety of media and incubation conditions. Bacteria recovered by cultivation from healthy lungs represented species that comprised 61% of the 16S rRNA-encoding gene sequences derived from bronchoalveolar lavage samples.IMPORTANCE  Neutral distribution of microbes is a distinguishing feature of the microbiome in healthy lungs, wherein constant dispersal of bacteria from the oral cavity overrides differential growth of bacteria. No bacterial species consistently deviated from the model predictions in healthy lungs, although representatives of many of the dispersed species were readily cultivated. In contrast, bacterial populations in diseased lungs were identified as being under active selection. Quantification of the relative importance of selection and neutral processes such as dispersal in shaping the healthy lung microbiome is a first step toward understanding its impacts on host health.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 954
Author(s):  
Zhongwang Lv ◽  
Hui Liu ◽  
Yongxin Yang ◽  
Dengpan Bu ◽  
Changjiang Zang ◽  
...  

β-casein is a primary protein in milk, and its variants have been associated with changes in the protein content of bovine milk. However, there has been little research focused on the effects of β-casein variants on milk metabolites. In the present study, dairy cows producing milk with β-casein variant A1/A1 (A1), A2/A2 (A2), and their heterozygote A1/A2 (A12) were screened by a high-resolution melting method. Individual milk samples were then collected from each of the cows, and the milk metabolites were separated and analyzed using nuclear magnetic resonance spectroscopy- and liquid-chromatography mass spectrometry-based metabolomics techniques. Differences in metabolites among the variant groups were evaluated by multivariate statistical analysis. The relative abundances of methionine, proline, and α-lactose were the highest in β-casein variant A2 milk, whereas choline, glycine, citric acid, and cyclic adenosine monophosphate (cAMP) showed the highest abundances in variant A1 milk. Metabolic pathways analysis indicated that the differential metabolites between variants A1 and A2 were involved in pantothenate and coenzyme A biosynthesis, butanoate metabolism, and valine, leucine, and isoleucine biosynthesis. Our results reveal the differences in milk metabolites among the β-casein variants A1, A2, and the heterozygote. These findings, thus, provide novel insights into the effects of β-casein variants on milk metabolites, facilitating further research into the mechanism of the biosynthesis of milk components in the mammary gland and the potential physiological function of milk associated with β-casein variants.


2015 ◽  
Vol 113 (8) ◽  
pp. 1220-1227 ◽  
Author(s):  
Charlotte E. Mills ◽  
Xenofon Tzounis ◽  
Maria-Jose Oruna-Concha ◽  
Don S. Mottram ◽  
Glenn R. Gibson ◽  
...  

Coffee is a relatively rich source of chlorogenic acids (CGA), which, as other polyphenols, have been postulated to exert preventive effects against CVD and type 2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of exerting beneficial effects in the large gut. Here, we utilise a stirred, anaerobic, pH-controlled, batch culture fermentation model of the distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation of coffee samples with the human faecal microbiota led to the rapid metabolism of CGA (4 h) and the production of dihydrocaffeic acid and dihydroferulic acid, while caffeine remained unmetabolised. The coffee with the highest levels of CGA (P< 0·05, relative to the other coffees) induced a significant increase in the growth ofBifidobacteriumspp. relative to the control vessel at 10 h after exposure (P< 0·05). Similarly, an equivalent quantity of CGA (80·8 mg, matched with that in high-CGA coffee) induced a significant increase in the growth ofBifidobacteriumspp. (P< 0·05). CGA alone also induced a significant increase in the growth of theClostridium coccoides–Eubacteriumrectalegroup (P< 0·05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to host health.


2002 ◽  
Vol 68 (9) ◽  
pp. 4689-4693 ◽  
Author(s):  
Dora I. A. Pereira ◽  
Glenn R. Gibson

ABSTRACT The objective of this study was to evaluate the effect of human gut-derived lactic acid bacteria and bifidobacteria on cholesterol levels in vitro. Continuous cultures inoculated with fecal material from healthy human volunteers with media supplemented with cholesterol and bile acids were used to enrich for potential cholesterol assimilators among the indigenous bacterial populations. Seven potential probiotics were found: Lactobacillus fermentum strains F53 and KC5b, Bifidobacterium infantis ATCC 15697, Streptococcus bovis ATCC 43143, Enterococcus durans DSM 20633, Enterococcus gallinarum, and Enterococcus faecalis. A comparative evaluation regarding the in vitro cholesterol reduction abilities of these strains along with commercial probiotics was undertaken. The degree of acid and bile tolerance of strains was also evaluated. The human isolate L. fermentum KC5b was able to maintain viability for 2 h at pH 2 and to grow in a medium with 4,000 mg of bile acids per liter. This strain was also able to remove a maximum of 14.8 mg of cholesterol per g (dry weight) of cells from the culture medium and therefore was regarded as a candidate probiotic.


2018 ◽  
Vol 216 ◽  
pp. 27-35 ◽  
Author(s):  
Juliana M.L.N. de Moura Bell ◽  
Joshua L. Cohen ◽  
Leticia F.M.C. de Aquino ◽  
Hyeyoung Lee ◽  
Vitor L. de Melo Silva ◽  
...  

2020 ◽  
Vol 99 (6) ◽  
pp. 739-745 ◽  
Author(s):  
A. Gardner ◽  
P.W. So ◽  
G.H. Carpenter

Metabolomics has been identified as a means of functionally assessing the net biological activity of a particular microbial community. Considering the oral microbiome, such an approach remains largely underused. While the current knowledge of the oral microbiome is constantly expanding, there are several deficits in knowledge particularly relating to their interactions with their host. This work uses nuclear magnetic resonance spectroscopy to investigate metabolic differences between oral microbial metabolism of endogenous (i.e., salivary protein) and exogenous (i.e., dietary carbohydrates) substrates. It also investigated whether microbial generation of different metabolites may be associated with host taste perception. This work found that in the absence of exogenous substrate, oral bacteria readily catabolize salivary protein and generate metabolic profiles similar to those seen in vivo. Important metabolites such as acetate, butyrate, and propionate are generated at relatively high concentrations. Higher concentrations of metabolites were generated by tongue biofilm compared to planktonic salivary bacteria. Thus, as has been postulated, metabolite production in proximity to taste receptors could reach relatively high concentrations. In the presence of 0.25 M exogenous sucrose, increased catabolism was observed with increased concentrations of a range of metabolites relating to glycolysis (lactate, pyruvate, succinate). Additional pyruvate-derived molecules such as acetoin and alanine were also increased. Furthermore, there was evidence that individual taste sensitivity to sucrose was related to differences in the metabolic fate of sucrose in the mouth. High-sensitivity perceivers appeared more inclined toward continual citric acid cycle activity postsucrose, whereas low-sensitivity perceivers had a more efficient conversion of pyruvate to lactate. This work collectively indicates that the oral microbiome exists in a complex balance with the host, with fluctuating metabolic activity depending on nutrient availability. There is preliminary evidence of an association between host behavior (sweet taste perception) and oral catabolism of sugar.


Sign in / Sign up

Export Citation Format

Share Document