scholarly journals The role of oligosaccharides and polysaccharides of xylan and mannan in gut health of monogastric animals

2020 ◽  
Vol 9 ◽  
Author(s):  
Utsav P. Tiwari ◽  
Stephen A. Fleming ◽  
Muhammed S. Abdul Rasheed ◽  
R. Jha ◽  
Ryan N. Dilger

Abstract Apart from its role as a digestive and absorptive organ, the gastrointestinal (GI) tract is a vital immune organ that encompasses roughly 70 % of the total immune cells of the body. As such, the physical, chemical and nutrient composition of the diet influences overall GI function, effectively as an immune organ. With the improvement in feed technology, agro-industrial co-products that are high in fibre have been widely used as a feed ingredient in the diets of pigs and poultry. Arabinoxylan (AX) and mannan are the most abundant hemicellulosic polysaccharides present in cereal grain and co-product ingredients used in the livestock industry. When monogastric animals consume diets containing high amounts of AX and mannans, stimulation of GI immune cells may occur. This involves the activation of several cellular and molecular pathways of the immune system and requires a considerable amount of energy and nutrients to be expended by the animal, which may ultimately influence overall health and growth performance of animals. Therefore, a better understanding of the role of AX and mannan in immune modulation will be helpful in modulating untoward GI immune responses, thereby minimising nutrient and energy expenditure toward this effort. This review will summarise pertinent research on the role of oligosaccharides and polysaccharides containing AX and mannans in immune modulation in order to preserve gut integrity.

Author(s):  
David M. Mosser ◽  
Kajal Hamidzadeh ◽  
Ricardo Goncalves

Abstract There have been many chapters written about macrophage polarization. These chapters generally focus on the role of macrophages in orchestrating immune responses by highlighting the T-cell-derived cytokines that shape these polarizing responses. This bias toward immunity is understandable, given the importance of macrophages to host defense. However, macrophages are ubiquitous and are involved in many different cellular processes, and describing them as immune cells is undoubtedly an oversimplification. It disregards their important roles in development, tissue remodeling, wound healing, angiogenesis, and metabolism, to name just a few processes. In this chapter, we propose that macrophages function as transducers in the body. According to Wikipedia, “A transducer is a device that converts energy from one form to another.” The word transducer is a term used to describe both the “sensor,” which can interpret a wide range of energy forms, and the “actuator,” which can switch voltages or currents to affect the environment. Macrophages are able to sense a seemingly endless variety of inputs from their environment and transduce these inputs into a variety of different response outcomes. Thus, rather than functioning as immune cells, they should be considered more broadly as cellular transducers that interpret microenvironmental changes and actuate vital tissue responses. In this chapter, we will describe some of the sensory stimuli that macrophages perceive and the responses they make to these stimuli to achieve their prime directive, which is the maintenance of homeostasis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5794
Author(s):  
Yu Sawada ◽  
Ayako Setoyama ◽  
Yumiko Sakuragi ◽  
Natsuko Saito-Sasaki ◽  
Haruna Yoshioka ◽  
...  

The skin is the outermost layer of the body and is exposed to many environmental stimuli, which cause various inflammatory immune responses in the skin. Among them, fungi are common microorganisms that colonize the skin and cause cutaneous fungal diseases such as candidiasis and dermatophytosis. The skin exerts inflammatory responses to eliminate these fungi through the cooperation of skin-component immune cells. IL-17 producing cells are representative immune cells that play a vital role in anti-fungal action in the skin by producing antimicrobial peptides and facilitating neutrophil infiltration. However, the actual impact of IL-17-producing cells in cutaneous fungal infections remains unclear. In this review, we focused on the role of IL-17-producing cells in a series of cutaneous fungal infections, the characteristics of skin infectious fungi, and the recognition of cell components that drive cutaneous immune cells.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 546-549
Author(s):  
Shweta Dadarao Parwe ◽  
Milind Abhimanyu Nisargandha ◽  
Rishikesh Thakre

Hitherto, there is no proper line of treatment for the new (nCOVID19). The development of unique antiviral drugs has taken precedence. Therapeutic antibodies () will be a significantly beneficial agent against nCOVID-19. Here the host immune responses to new discussed in this review provide strategy and further treatment and understanding of clinical interventions against nCOVID-19. Plasma therapy uses the antibodies found in the blood of people recovering (or convalesced) from an infection to treat infected patients. When an infection occurs, the body begins producing proteins specially made to kill the germ, called antibodies. Those antibodies coat specifically plasma in the blood of survivors, the yellow transparent liquid blood portion for months or even years. research assesses plasma use from Convalescent patients of infected with nCOVID-19 as a possible preventive treatment. But it is not yet recommended as a line of treatment, and it is used as a clinical trial in the new in Indian population.


2021 ◽  
Vol 22 (13) ◽  
pp. 7227
Author(s):  
Lai-San Wong ◽  
Yu-Ta Yen ◽  
Chih-Hung Lee

Atopic dermatitis (AD) is a prototypic inflammatory disease that presents with intense itching. The pathophysiology of AD is multifactorial, involving environmental factors, genetic susceptibility, skin barrier function, and immune responses. A recent understanding of pruritus transmission provides more information about the role of pruritogens in the pathogenesis of AD. There is evidence that pruritogens are not only responsible for eliciting pruritus, but also interact with immune cells and act as inflammatory mediators, which exacerbate the severity of AD. In this review, we discuss the interaction between pruritogens and inflammatory molecules and summarize the targeted therapies for AD.


Author(s):  
Sebastian Wawrocki ◽  
Magdalena Druszczynska

The development of effective innate and subsequent adaptive host immune responses is highly dependent on the production of proinflammatory cytokines that increase the activity of immune cells. The key role in this process is played by inflammasomes, multimeric protein complexes serving as a platform for caspase-1, an enzyme responsible for proteolytic cleavage of IL-1βand IL-18 precursors. Inflammasome activation, which triggers the multifaceted activity of these two proinflammatory cytokines, is a prerequisite for developing an efficient inflammatory response against pathogenicMycobacterium tuberculosis(M.tb). This review focuses on the role of NLRP3 and AIM2 inflammasomes inM.tb-driven immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yin-Fu Sun ◽  
Jiang Pi ◽  
Jun-Fa Xu

Exosomes are cell-derived nanovesicles carrying protein, lipid, and nucleic acid for secreting cells, and act as significant signal transport vectors for cell-cell communication and immune modulation. Immune-cell-derived exosomes have been found to contain molecules involved in immunological pathways, such as MHCII, cytokines, and pathogenic antigens. Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most fatal infectious diseases. The pathogen for tuberculosis escapes the immune defense and continues to replicate despite rigorous and complicate host cell mechanisms. The infected-cell-derived exosomes under this circumstance are found to trigger different immune responses, such as inflammation, antigen presentation, and activate subsequent pathways, highlighting the critical role of exosomes in anti-MTB immune response. Additionally, as a novel kind of delivery system, exosomes show potential in developing new vaccination and treatment of tuberculosis. We here summarize recent research progress regarding exosomes in the immune environment during MTB infection, and further discuss the potential of exosomes as delivery system for novel anti-MTB vaccines and therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chiel van Geffen ◽  
Astrid Deißler ◽  
Markus Quante ◽  
Harald Renz ◽  
Dominik Hartl ◽  
...  

The immune system is receiving increasing attention for interstitial lung diseases, as knowledge on its role in fibrosis development and response to therapies is expanding. Uncontrolled immune responses and unbalanced injury-inflammation-repair processes drive the initiation and progression of idiopathic pulmonary fibrosis. The regulatory immune system plays important roles in controlling pathogenic immune responses, regulating inflammation and modulating the transition of inflammation to fibrosis. This review aims to summarize and critically discuss the current knowledge on the potential role of regulatory immune cells, including mesenchymal stromal/stem cells, regulatory T cells, regulatory B cells, macrophages, dendritic cells and myeloid-derived suppressor cells in idiopathic pulmonary fibrosis. Furthermore, we review the emerging role of regulatory immune cells in anti-fibrotic therapy and lung transplantation. A comprehensive understanding of immune regulation could pave the way towards new therapeutic or preventive approaches in idiopathic pulmonary fibrosis.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


2018 ◽  
Vol 4 (1) ◽  
pp. 1-14
Author(s):  
Moonkyoung Jeong ◽  
Hansol Kim ◽  
Ji-Ho Park

Abstract Biocompatible materials have a great potential to engineer immunology towards therapeutic applications. Among them, porous materials have attracted much attention for immune modulation due to their unique porous structure. The large surface area and pore space offer high loading capacity for various payloads including peptides, proteins and even cells. We first introduce recent developments in the porous particles that can deliver immunomodulatory agents to antigen presenting cells for immunomodulation. Then, we review recent developments in the porous implants that can act as a cellattracting/ delivering platform to generate artificial immunomodulatory environments in the body. Lastly, we summarize recent findings of immunogenic porous materials that can induce strong immune responses without additional adjuvants. We also discuss future direction of porous materials to enhance their immunomodulatory potential for immunotherapeutic applications.


2018 ◽  
Vol 48 (1) ◽  
pp. 16-29 ◽  
Author(s):  
Richard Frank Tester ◽  
Farage H. Al-Ghazzewi

Purpose This paper aims to focus on the utilisation of pre- and probiotics for oral care and the state of knowledge at this time. Design/methodology/approach Pre- and probiotics describe beneficial carbohydrates and microbiota, respectively, for optimal gut health. Carbohydrates provide energy selectively for the gut-friendly bacteria. The use of both carbohydrates and bacteria is, however, being expanded into other areas of the body – including the skin, vagina and oral cavity – for health-related applications. Findings There is increased interest in both pre- and probiotics for oral care products. The importance of oral microflora and their selective substrates is discussed against a background of contemporary oral care approaches. The issues and benefits are discussed in this review. Originality/value It is clear that consumption of prebiotics and probiotics may play a role as potential prophylactic or therapeutic agents for reducing the presence of organisms in the mouth associated with tooth decay. To confirm a beneficial effect of pre- and probiotics further in vivo studies involving healthy human volunteers should be considered.


Sign in / Sign up

Export Citation Format

Share Document