scholarly journals Enhancing sulforaphane absorption and excretion in healthy men through the combined consumption of fresh broccoli sprouts and a glucoraphanin-rich powder

2011 ◽  
Vol 107 (9) ◽  
pp. 1333-1338 ◽  
Author(s):  
Jenna M. Cramer ◽  
Margarita Teran-Garcia ◽  
Elizabeth H. Jeffery

Sulforaphane (SF) is a chemopreventive isothiocyanate (ITC) derived from glucoraphanin (GRP) hydrolysis by myrosinase, a thioglucoside present in broccoli. The ability of broccoli powders sold as supplements to provide dietary SF is often of concern as many supplements contain GRP, but lack myrosinase. In a previous study, biomarkers of SF bioavailability from a powder rich in GRP, but lacking myrosinase, were enhanced by co-consumption of a myrosinase-containing air-dried broccoli sprout powder. Here, we studied the absorption of SF from the GRP-rich powder used in the previous study, but in combination with fresh broccoli sprouts, which are commercially available and more applicable to the human diet than air-dried sprout powder. A total of four participants each consumed four meals (separated by 1 week) consisting of dry cereal and yogurt with sprouts equivalent to 70 μmol SF, GRP powder equivalent to 120 μmol SF, both or neither. Metabolites of SF were analysed in blood and urine. The 24 h urinary SF-N-acetylcysteine recovery was 65, 60 and 24 % of the dose ingested from combination, broccoli sprout and GRP powder meals, respectively. In urine and plasma, ITC appearance was delayed following the GRP powder meal compared with the sprout and combination meals. Compared with the GRP powder or sprouts alone, combining broccoli sprouts with the GRP powder synergistically enhanced the early appearance of SF, offering insight into the combination of foods for improved health benefits of foods that reduce the risk for cancer.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jan Stundl ◽  
Anna Pospisilova ◽  
David Jandzik ◽  
Peter Fabian ◽  
Barbora Dobiasova ◽  
...  

In most vertebrates, pharyngeal arches form in a stereotypic anterior-to-posterior progression. To gain insight into the mechanisms underlying evolutionary changes in pharyngeal arch development, here we investigate embryos and larvae of bichirs. Bichirs represent the earliest diverged living group of ray-finned fishes, and possess intriguing traits otherwise typical for lobe-finned fishes such as ventral paired lungs and larval external gills. In bichir embryos, we find that the anteroposterior way of formation of cranial segments is modified by the unique acceleration of the entire hyoid arch segment, with earlier and orchestrated development of the endodermal, mesodermal, and neural crest tissues. This major heterochronic shift in the anteroposterior developmental sequence enables early appearance of the external gills that represent key breathing organs of bichir free-living embryos and early larvae. Bichirs thus stay as unique models for understanding developmental mechanisms facilitating increased breathing capacity.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Ami Sotokawauchi ◽  
Yuji Ishibashi ◽  
Takanori Matsui ◽  
Sho-ichi Yamagishi

We have previously shown that sulforaphane not only inhibits formation of advanced glycation end products (AGEs) but also exerts anti-inflammatory effects on AGE-exposed human umbilical vein endothelial cells (HUVECs) and AGE-injected rat aortae. Here we examined the effects of aqueous extract of glucoraphanin-rich broccoli sprouts on formation of AGEs and then investigated whether the extract could attenuate inflammatory or oxidative stress reactions in tumor necrosis factor-alpha (TNF-α)- or AGE-exposed HUVECs. Fresh broccoli sprouts were homogenized in phosphate-buffered saline and filtered through a gauze. After centrifugation, clear extract was obtained. AGE formation was measured by enzyme-linked immunosorbent assay. Gene expression was evaluated by real-time reverse transcription-polymerase chain reaction. Reactive oxygen species (ROS) generation were measured using a fluorescent dye. Five percent broccoli sprout extract inhibited the formation of AGEs, reduced basal gene expressions of monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1,) and receptor for AGEs (RAGE), and upregulated endothelial nitric oxide synthase (eNOS) mRNA levels in HUVECs. TNF-α upregulated MCP-1, ICAM-1, and RAGE mRNA levels in HUVECs, all of which were attenuated by the treatment with 1% broccoli sprout extract. Pretreatment of 1% broccoli sprout extract prevented the ROS generation in HUVECs evoked by AGEs. The present study demonstrates that sulforaphane-rich broccoli sprout extract could inhibit the AGE-RAGE axis and exhibit anti-inflammatory actions in HUVECs. Supplementation of sulforaphane-rich broccoli sprout extract may play a protective role against vascular injury.


2015 ◽  
Vol 59 (3) ◽  
pp. 424-433 ◽  
Author(s):  
Lauren L. Atwell ◽  
Anna Hsu ◽  
Carmen P. Wong ◽  
Jan F. Stevens ◽  
Deborah Bella ◽  
...  

2014 ◽  
Vol 57 (3-4) ◽  
pp. 201-214 ◽  
Author(s):  
Christelle M. Andre ◽  
Sylvain Legay ◽  
Christian Iammarino ◽  
Johanna Ziebel ◽  
Cedric Guignard ◽  
...  

2011 ◽  
Vol 107 (10) ◽  
pp. 1482-1488 ◽  
Author(s):  
Myriam Richelle ◽  
Pierre Lambelet ◽  
Andreas Rytz ◽  
Isabelle Tavazzi ◽  
Anne-France Mermoud ◽  
...  

Dietary lycopene consists mostly of the (all-E) isomer. Upon absorption, (all-E) lycopene undergoes isomerisation into various (Z)-isomers. Because these isomers offer potentially better health benefits than the (all-E) isomer, the aim of the present study was to investigate if the profile of lycopene isomers in intestinal lipoproteins is affected by the profile of lycopene isomers in the meal and by the tomato preparation. Six postprandial, crossover tests were performed in healthy men. Three meals provided about 70 % of the lycopene as (Z)-isomers, either mainly as 5-(Z) or 13-(Z), or as a mixture of 9-(Z) and 13-(Z) lycopene, while three tomato preparations provided lycopene mainly as the (all-E) isomer. Consumption of the 5-(Z) lycopene-rich meal led to a high (60 %) proportion of this isomer in TAG-rich lipoproteins (TRL), indicating a good absorption and/or a low intestinal conversion of this isomer. By contrast, consumption of meals rich in 9-(Z) and 13-(Z) lycopene isomers resulted in a low level of these isomers but high amounts of the 5-(Z) and (all-E) isomers in TRL. This indicates that the 9-(Z) and 13-(Z) isomers were less absorbed or were converted into 5-(Z) and (all-E) isomers. Dietary (Z)-lycopene isomers were, therefore, differently isomerised and released in TRL during their intestinal absorption in men. Consuming the three meals rich in (all-E) lycopene resulted in similar proportions of lycopene isomers in TRL: 60 % (all-E), 20 % 5-(Z), 9 % 13-(Z), 2 % 9-(Z) and 9 % unidentified (Z)-isomers. These results show that the tomato preparation has no impact on the lycopene isomerisation occurring during absorption in humans.


2017 ◽  
Vol 8 (4) ◽  
pp. 1599-1610 ◽  
Author(s):  
Elisabetta De Angelis ◽  
Rosa Pilolli ◽  
Simona L. Bavaro ◽  
Linda Monaci

Soy is an important component of the human diet thanks to its nutritional value and high protein content; however, it also represents a risk for allergenic consumers due to its potential to trigger adverse reactions in sensitized individuals.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jed W. Fahey ◽  
Thomas W. Kensler

Broccoli sprouts are a convenient and rich source of the glucosinolate glucoraphanin, which can generate the chemopreventive agent sulforaphane through the catalytic actions of plant myrosinase or β-thioglucosidases in the gut microflora. Sulforaphane, in turn, is an inducer of cytoprotective enzymes through activation of Nrf2 signaling, and a potent inhibitor of carcinogenesis in multiple murine models. Sulforaphane is also protective in models of diabetes, neurodegenerative disease, and other inflammatory processes, likely reflecting additional actions of Nrf2 and interactions with other signaling pathways. Translating this efficacy into the design and implementation of clinical chemoprevention trials, especially food-based trials, faces numerous challenges including the selection of the source, placebo, and dose as well as standardization of the formulation of the intervention material. Unlike in animals, purified sulforaphane has had very limited use in clinical studies. We have conducted a series of clinical studies and randomized clinical trials to evaluate the effects of composition (glucoraphanin-rich [± myrosinase] vs. sulforaphane-rich or mixture beverages), formulation (beverage vs. tablet) and dose, on the efficacy of these broccoli sprout-based preparations to evaluate safety, pharmacokinetics, pharmacodynamic action, and clinical benefit. While the challenges for the evaluation of broccoli sprouts in clinical trials are themselves formidable, further hurdles must be overcome to bring this science to public health action.


2017 ◽  
Vol 7 (5) ◽  
pp. 338 ◽  
Author(s):  
James M. Smoliga ◽  
Otis L. Blanchard

Background: Determination of the first-in-human and pharmacologically active dosage for drugs and nutraceutical compounds is a critical step in study design and product development.  Allometric scaling is a form of mathematic modeling commonly used to convert dosages between species.  While allometric scaling allows for quick and straightforward conversions between species, it is often misunderstood and misused in translational clinical applications.  This is readily demonstrated in the case of resveratrol – a polyphenol which is found in red wine.  In the past decade, a considerable amount of research has emerged regarding the health benefits of the resveratrol supplementation.  Although data from rodent models suggests that resveratrol can have major effects on cardiometabolic and neurologic health, human clinical trials have had mixed results.  While some human clinical trials have yielded encouraging results, a few noteworthy trials have reported that seemingly appropriate allometry-derived dosages of resveratrol did not provide the expected health benefits reported in animal models.Here, we discuss the history of various models within allometry, including their advantages, disadvantages, and nuances from a clinical perspective.  This historical information will provide some insight into why dosages recommended from allometric scaling are appropriate in some circumstances and inappropriate in others.  We will then demonstrate how allometric models have been utilized to translate dosages of resveratrol from rodent models into the dosages recommended for human clinical trials.  Pharmacokinetic data from various human clinical trials will be summarized and compared to data predicted from allometric models.  Data from selected human clinical trials will then synthesized to demonstrate the dosage-dependent effects of resveratrol, and provide further insight into the appropriate use of allometric models for selecting resveratrol dosage.  Together, this information will promote a greater understanding of the role of allometric scaling in dose selection and provide an explanation for some of the apparent inconsistencies in translational research regarding resveratrol.Keywords: allometric scaling, dose conversion, bioavailability, pharmacokinetics, resveratrol


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3013
Author(s):  
John A. Bouranis ◽  
Laura M. Beaver ◽  
Jaewoo Choi ◽  
Carmen P. Wong ◽  
Duo Jiang ◽  
...  

Isothiocyanates, such as sulforaphane and iberin, derived from glucosinolates (GLS) in cruciferous vegetables, are known to prevent and suppress cancer development. GLS can also be converted by bacteria to biologically inert nitriles, such as sulforaphane-nitrile (SFN-NIT) and iberin-nitrile (IBN-NIT), but the role of the gut microbiome in this process is relatively undescribed and SFN-NIT excretion in humans is unknown. An ex vivo fecal incubation model with in vitro digested broccoli sprouts and 16S sequencing was utilized to explore the role of the gut microbiome in SFN- and IBN-NIT production. SFN-NIT excretion was measured among human subjects following broccoli sprout consumption. The fecal culture model showed high inter-individual variability in nitrile production and identified two sub-populations of microbial communities among the fecal cultures, which coincided with a differing abundance of nitriles. The Clostridiaceae family was associated with high levels, while individuals with a low abundance of nitriles were more enriched with taxa from the Enterobacteriaceae family. High levels of inter-individual variation in urine SFN-NIT levels were also observed, with peak excretion of SFN-NIT at 24 h post broccoli sprout consumption. These results suggest that nitrile production from broccoli, as opposed to isothiocyanates, could be influenced by gut microbiome composition, potentially lowering efficacy of cruciferous vegetable interventions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Cappellini ◽  
Alessandra Marinelli ◽  
Marta Toccaceli ◽  
Chiara Tonelli ◽  
Katia Petroni

Anthocyanins represent the major red, purple, and blue pigments in many flowers, fruits, vegetables, and cereals. They are also recognized as important health-promoting components in the human diet with protective effects against many chronic diseases, including cardiovascular diseases, obesity, and cancer. Anthocyanin biosynthesis has been studied extensively, and both biosynthetic and key regulatory genes have been isolated in many plant species. Here, we will provide an overview of recent progress in understanding the anthocyanin biosynthetic pathway in plants, focusing on the transcription factors controlling activation or repression of anthocyanin accumulation in cereals and fruits of different plant species, with special emphasis on the differences in molecular mechanisms between monocot and dicot plants. Recently, new insight into the transcriptional regulation of the anthocyanin biosynthesis, including positive and negative feedback control as well as epigenetic and post-translational regulation of MYB-bHLH-WD40 complexes, has been gained. We will consider how knowledge of regulatory mechanisms has helped to produce anthocyanin-enriched foods through conventional breeding and metabolic engineering. Additionally, we will briefly discuss the biological activities of anthocyanins as components of the human diet and recent findings demonstrating the important health benefits of anthocyanin-rich foods against chronic diseases.


Sign in / Sign up

Export Citation Format

Share Document