scholarly journals Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods

2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Cappellini ◽  
Alessandra Marinelli ◽  
Marta Toccaceli ◽  
Chiara Tonelli ◽  
Katia Petroni

Anthocyanins represent the major red, purple, and blue pigments in many flowers, fruits, vegetables, and cereals. They are also recognized as important health-promoting components in the human diet with protective effects against many chronic diseases, including cardiovascular diseases, obesity, and cancer. Anthocyanin biosynthesis has been studied extensively, and both biosynthetic and key regulatory genes have been isolated in many plant species. Here, we will provide an overview of recent progress in understanding the anthocyanin biosynthetic pathway in plants, focusing on the transcription factors controlling activation or repression of anthocyanin accumulation in cereals and fruits of different plant species, with special emphasis on the differences in molecular mechanisms between monocot and dicot plants. Recently, new insight into the transcriptional regulation of the anthocyanin biosynthesis, including positive and negative feedback control as well as epigenetic and post-translational regulation of MYB-bHLH-WD40 complexes, has been gained. We will consider how knowledge of regulatory mechanisms has helped to produce anthocyanin-enriched foods through conventional breeding and metabolic engineering. Additionally, we will briefly discuss the biological activities of anthocyanins as components of the human diet and recent findings demonstrating the important health benefits of anthocyanin-rich foods against chronic diseases.

Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 340 ◽  
Author(s):  
Xiao Meng ◽  
Jing Zhou ◽  
Cai-Ning Zhao ◽  
Ren-You Gan ◽  
Hua-Bin Li

Resveratrol is a bioactive compound in many foods. Since its anticancer activity was reported in 1997, its health benefits have been intensively investigated. Resveratrol has antioxidant, anti-inflammatory, immunomodulatory, glucose and lipid regulatory, neuroprotective, and cardiovascular protective effects, therefore, can protect against diverse chronic diseases, such as cardiovascular diseases (CVDs), cancer, liver diseases, obesity, diabetes, Alzheimer’s disease, and Parkinson’s disease. This review summarizes the main findings of resveratrol-related health benefits in recent epidemiological surveys, experimental studies, and clinical trials, highlighting its related molecular mechanisms. Resveratrol, therefore, has been regarded as a potent candidate for the development of nutraceuticals and pharmaceuticals to prevent and treat certain chronic diseases.


2020 ◽  
Vol 13 ◽  
Author(s):  
Sajad Fakhri ◽  
Jayanta Kumar Patra ◽  
Swagat Kumar Das ◽  
Gitishree Das ◽  
Mohammad Bagher Majnooni ◽  
...  

Background: As a major cause of morbidity and mortality, cardiovascular diseases (CVDs) are globally increasing. In spite of recent development in the management of cardiovascular complications, CVDs have remained a medical challenge. Numerous conventional drugs are used to play cardioprotective roles; however, they are associated with several side effects. Considering the rich phytochemistry and fewer side effects of herbal medicines, they have gained particular attention to develop novel herbal drugs with cardioprotective potentials. Amongst natural entities, ginger is an extensively used and well-known functional food and condiment, possessing plentiful bioactivities, like antiinflammatory, antioxidant, and antimicrobial properties in several disorders management. Objective: The current review deliberated phytochemical properties as well as the ginger/ginger constituents' biological activities and health benefits in several diseases, with particular attention to cardiovascular complications. Methods: A comprehensive research was conducted using multiple databases, including Scopus, PubMed, Medline, Web of Science, national database (Irandoc and SID), and related articles in terms of the health benefits and cardioprotective effects of ginger/ginger constituents. These data were collected from inception until August 2019. Results: In recent years, several herbal medicines were used to develop new drugs with more potency and also minor side effects. Amongst natural entities, ginger is an extensively used traditional medicine in several diseases. The crude extract, along with related pungent active constituents, is mostly attributed to heart health. The cardioprotective effects of ginger are contributed to its cardiotonic, antihypertensive, anti-hyperlipidemia, and anti-platelet effects. The signaling pathways and molecular mechanisms of ginger regarding its cardioprotective effects are also clarified. Conclusion: This study revealed the biological activities, health benefits, and cardioprotective properties of ginger/ginger constituents along with related mechanisms of action, which gave new insights to show new avenue in the treatment of CVDs.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Wenhui Mo ◽  
Chengfen Wang ◽  
Jingjing Li ◽  
Kan Chen ◽  
Yujing Xia ◽  
...  

Objective. Fucosterol is derived from the brown alga Eisenia bicyclis and has various biological activities, including antioxidant, anticancer, and antidiabetic properties. The aim of this study was to investigate the protective effects of fucosterol pretreatment on Concanavalin A- (ConA-) induced acute liver injury in mice, and to understand its molecular mechanisms. Materials and Methods. Acute liver injury was induced in BALB/c mice by ConA (25 mg/kg), and fucosterol (dissolved in 2% DMSO) was orally administered daily at doses of 25, 50, and 100 mg/kg. The levels of hepatic necrosis, apoptosis, and autophagy associated with inflammatory cytokines were measured at 2, 8, and 24 h. Results. Fucosterol attenuated serum liver enzyme levels and hepatic necrosis and apoptosis induced by TNF-α, IL-6, and IL-1β. Fucosterol also inhibited apoptosis and autophagy by upregulating Bcl-2, which decreased levels of functional Bax and Beclin-1. Furthermore, reduced P38 MAPK and NF-κB signaling were accompanied by PPARγ activation. Conclusion. This study showed that fucosterol could alleviate acute liver injury induced by ConA by inhibiting P38 MAPK/PPARγ/NF-κB signaling. These findings highlight that fucosterol is a promising potential therapeutic agent for acute liver injury.


2018 ◽  
Vol 13 (1) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Wonhwa Lee ◽  
Yuri Lee ◽  
Jaehong Kim ◽  
Jong-Sup Bae

Pelargonidin (PEL) is a well-known red pigment found in plants and has important biological activities that are potentially beneficial for human health. The aim of this study was to investigate the effect of PEL on lipopolysaccharide (LPS)-induced liver failure in mice, and to elucidate its underlying molecular mechanisms. Liver failure was induced by LPS (15 mg/kg, i.p) in mice, and 12 h later, they were treated intravenously with PEL. Administration of LPS significantly increased mortality, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), and inflammatory cytokines, and expression of toll-like receptor 4 (TLR4) protein; PEL treatment effectively countered these effects of LPS. Further, LPS treatment markedly increased the expression of myeloid differentiation primary response gene 88 (MyD88), phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), and expressions of nuclear proteins, such as nuclear factor (NF)-κB and phosphorylated c-Jun. Additionally, LPS increased the serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6. All these effects of LPS were attenuated by PEL. In addition, the LPS-mediated increase in the level of serum interferon (IFN)-β expression of the TLR-associated activator of IFN (TRIF) protein, and phosphorylation of IFN regulator factor 3 (IRF3) were reduced by PEL. Our results suggest that PEL attenuates LPS-induced liver damage by inhibition of the TLR-mediated inflammatory pathway and could be used to treat liver diseases.


2018 ◽  
Vol 19 (10) ◽  
pp. 3270 ◽  
Author(s):  
Yasuyoshi Miyata ◽  
Hideki Sakai

Royal jelly (RJ) is a glandular secretion produced by worker honeybees and is a special food for the queen honeybee. It results in a significant prolongation of the lifespan of the queen honeybee compared with the worker honeybees through anti-inflammatory, anti-oxidant and anti-microbial activities. Consequently, RJ is used as cosmetic and dietary supplement throughout the world. In addition, in vitro studies and animal experiments have demonstrated that RJ inhibits cell proliferation and stimulates apoptosis in various types of malignant cells and affects the production of various chemokines, anti-oxidants and growth factors and the expression of cancer-related molecules in patients with malignancies, especially in patients treated with anti-cancer agents. Therefore, RJ is thought to exert anti-cancer effects on tumor growth and exhibit protective functions against drug-induced toxicities. RJ has also been demonstrated to be useful for suppression of adverse events, the maintenance of the quality of life during treatment and the improvement of prognosis in animal models and patients with malignancies. To understand the mechanisms of the beneficial effects of RJ, knowledge of the changes induced at the molecular level by RJ with respect to cell survival, inflammation, oxidative stress and other cancer-related factors is essential. In addition, the effects of combination therapies of RJ and other anti-cancer agents or natural compounds are important to determine the future direction of RJ-based treatment strategies. Therefore, in this review, we have covered the following five issues: (1) the anti-cancer effects of RJ and its main component, 10-hydroxy-2-decenoic acid; (2) the protective effects of RJ against anti-cancer agent-induced toxicities; (3) the molecular mechanisms of such beneficial effects of RJ; (4) the safety and toxicity of RJ; and (5) the future directions of RJ-based treatment strategies, with a discussion on the limitations of the study of the biological activities of RJ.


2020 ◽  
Vol 53 (1) ◽  
pp. 105-120 ◽  
Author(s):  
W. SUN ◽  
M. H. SHAHRAJABIAN ◽  
M. KHOSHKHARAM ◽  
H. SHEN ◽  
Q. CHENG

Cotton (Gossypium L.) is one of the most important commercial crops and it is famous as white gold. Cotton has a diversity of applications, principally medicinal and many other usages, such as pigments, derivatives for cattle feed, different uses of the oil extracts and etc. Cottonseed oil has a ration of 2:1 of polyunsaturated to saturated fatty acids and generally consists of 65-70% unsaturated fatty acids, including 18-24% monounsaturated (oleic) and 42-52% polyunsaturated (linoleic), and 26-35% saturated (palmitic and stearic). The most important health benefits of cotton is treat respiratory diseases, treat skin problems, treat wounds, beneficial for breastfeeding mothers, a good cure for rat bite, an appropriate cure for scorpion bite, for joint and eye pains, for swollen legs, for removing bacteria in teeth, and alternative medicine for various diseases such as cancer, HIV and etc. Cotton seed oil mostly extracted from Gossypium hirsutum and Gossypium herbaceum, that are also grown for cotton fiber and animal feed. Gossypol is one of the most effective ingredients, both in traditional pharmaceutical practices and alternative modern medicinal preparations. It is a toxic polyphenolic bisesquiterpene, which may have antifertility and antiviral properties. The obtained findings suggest potential of cotton as a natural resource in pharmaceutical industries.


2021 ◽  
Vol 4 (6) ◽  
pp. 01-06
Author(s):  
Desta Abayechaw ◽  
Tarekegn Yoseph

Traditional medicine provides an important health care service and can be used as an alternate therapy. Plants are rich in phytochemical compounds that offer a source of dietary ingredients used to treat various ailments and problems. Spearmint (Mentha spicata L.) belongs to the family Lamiaceae and is a rich source of polyphenols. These polyphenols have shown numerous biological activities and health benefits. Also, conserve biodiversity and manage soil-borne pests as well as enhance soil and plant health. Therefore, the review of the present study shows the bioactivity, health effects, and inter-cropping advantages of spearmint.


2021 ◽  
Author(s):  
Sanja Matić ◽  
◽  
Pavle Mašković ◽  
Katarina Šipovac

Plants from the genus Scrophularia, family Scrophulariaceae have numerous biological activities such as antibacterial, antioxidant, antiprotozoal, antitumor, hepatoprotective, and antidiabetic. However, as far as we know, genotoxic and antigenotoxic effects of these two plant species remain unexplored. The present study aimed to evaluate possible in vivo protective effects of the methanol extracts of two plant species of the Scrophularia genus, Scrophularia canina L. and S. alata Gilib., against carbon tetrachloride (CCl4)-induced DNA damage in albino Wistar rat. A significant increase in total comet score has been shown in animals receiving CCl4 compared with the negative control. Treatment with either S. alata or S. canina extracts reduced CCl4 induced DNA damage as indicated by the percentage of reduction in total comet score with a value above 50%.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1245 ◽  
Author(s):  
Xiao-Zhen Zhang ◽  
Hao Liu ◽  
Su-Ren Chen

Long non-coding RNA (lncRNA), which is a kind of noncoding RNA, is generally characterized as being more than 200 nucleotide transcripts in length. LncRNAs exhibit many biological activities, including, but not limited to, cancer development. In this review, a search of the PubMed database was performed to identify relevant studies published in English. The term “lncRNA or long non-coding RNA” was combined with a range of search terms related to the core focus of the review: mechanism, structure, regulation, and cancer. The eligibility of the retrieved studies was mainly based on the abstract. The decision as to whether or not the study was included in this review was made after a careful assessment of its content. The reference lists were also checked to identify any other study that could be relevant to this review. We first summarized the molecular mechanisms of lncRNAs in tumorigenesis, including competing endogenous RNA (ceRNA) mechanisms, epigenetic regulation, decoy and scaffold mechanisms, mRNA and protein stability regulation, transcriptional and translational regulation, miRNA processing regulation, and the architectural role of lncRNAs, which will help a broad audience better understand how lncRNAs work in cancer. Second, we introduced recent studies to elucidate the structure of lncRNAs, as there is a link between lncRNA structure and function and visualizing the architectural domains of lncRNAs is vital to understanding their function. Third, we explored emerging evidence for regulators of lncRNA expression, lncRNA turnover, and lncRNA modifications (including 5-methylcytidine, N6-methyladenosine, and adenosine to inosine editing), highlighting the dynamics of lncRNAs. Finally, we used autophagy in cancer as an example to interpret the diverse mechanisms of lncRNAs and introduced clinical trials of lncRNA-based cancer therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Innocent Uzochukwu Okagu ◽  
Joseph Chinedum Ndefo ◽  
Emmanuel Chigozie Aham ◽  
Chibuike. C. Udenigwe

The health benefits and toxicity of plant products are largely dependent on their secondary metabolite contents. These compounds are biosynthesized by plants as protection mechanisms against environmental factors and infectious agents. This review discusses the traditional uses, phytochemical constituents and health benefits of plant species in genus Zanthoxylum with a focus on cancer, microbial and parasitic infections, and sickle cell disease as reported in articles published from 1970 to 2021 in peer-reviewed journals and indexed in major scientific databases. Generally, Z. species are widely distributed in Asia, America and Africa, where they are used as food and for disease treatment. Several compounds belonging to alkaloids, flavonoids, terpenoids, and lignans, among others have been isolated from Z. species. This review discusses the biological activities reported for the plant species and their phytochemicals, including anticancer, antibacterial, antifungal, antiviral, anti-trypanosomal, antimalarial and anti-sickling properties. The safety profiles and suggestions for conservation of the Z. species were also discussed. Taken together, this review demonstrates that Z. species are rich in a wide range of bioactive phytochemicals with multiple health benefits, but more research is needed towards their practical application in the development of functional foods, nutraceuticals and lead compounds for new drugs.


Sign in / Sign up

Export Citation Format

Share Document