scholarly journals Impact of weight loss with or without exercise on abdominal fat and insulin resistance in obese individuals: a randomised clinical trial

2013 ◽  
Vol 110 (3) ◽  
pp. 486-492 ◽  
Author(s):  
Ana Paula Trussardi Fayh ◽  
André Luiz Lopes ◽  
Pablo Rober Fernandes ◽  
Alvaro Reischak-Oliveira ◽  
Rogério Friedman

Evidence supports an important contribution of abdominal obesity and inflammation to the development of insulin resistance (IR) and CVD. Weight loss in obese individuals can reduce inflammation and, consequently, IR, but the role of training remains unclear. The aim of this study was to evaluate the effects of body weight reduction with and without exercise over abdominal fat tissue (primary outcome) and IR. In this randomised clinical trial, forty-eight obese individuals (age 31·8 (sd 6·0) years, BMI 34·8 (sd 2·7) kg/m2) were randomised to either a diet-only group (DI) or a diet and exercise group (DI+EXE). Treatment was maintained until 5 % of the initial body weight was lost. At baseline and upon completion, the following parameters were analysed: biochemical parameters such as glycaemia and insulin for the determination of homeostasis model assessment of insulin resistance (HOMA-IR), high-sensitivity C-reactive protein (hs-CRP) and abdominal computed tomography for the determination of visceral and subcutaneous adipose tissue. A total of thirteen individuals dropped out before completing the weight-loss intervention and did not repeat the tests. In both the DI (n 18) and DI+EXE (n 17) groups, we observed significant and similar decreases of visceral adipose tissue (difference between means: 7·9 (95 % CI − 9·5, 25·2) cm2, P= 0·36), hs-CRP (difference between means: − 0·06 (95 % CI − 0·19, 0·03) mg/l, P= 0·39) and HOMA (difference between means: − 0·04 (95 % CI − 0·17, 0·08), P= 0·53). In the present study, 5 % weight loss reduced abdominal fat and IR in obese individuals and exercise did not add to the effect of weight loss on the outcome variables.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Hoda Khorsandi ◽  
Omid Nikpayam ◽  
Reyhaneh Yousefi ◽  
Maryam Parandoosh ◽  
Nima Hosseinzadeh ◽  
...  

Abstract Background The present study was designed to determine whether zinc supplementation would increase the effects of restricted calorie diet (RCD) on obesity. Methods and materials A randomized, double-blind clinical trial was performed on 40 obese subjects who were randomly assigned to receive zinc supplements (30 mg/day) or placebo for a period of 15-weeks. Both groups were under a restricted calorie diet (~ 300 kcal lower than the estimated energy requirement). Anthropometric measurements, biochemical markers, appetite, and dietary intakes were determined during the study period. Results The reductions of body weight, body mass index, waist circumference, and hip circumference were significantly higher in the zinc group compared to the placebo group (P = 0.032, 0.025, 0.003, and 0.0001, respectively). Lower levels of high sensitivity C-reactive protein, apelin, homeostatic model assessment of insulin resistance (HOMA-IR), and appetite score were observed in the zinc group in comparison with the placebo group (P = 0.0001, 0.001, 0.031 and 0.001 respectively). Conclusion This study indicates that Zn supplementation with a restricted calorie diet has favorable effects in reducing anthropometric measurements, inflammatory markers, insulin resistance and appetite in individuals with obesity, and may play an effective role in the treatment of obesity. Trial registration This clinical trial was registered at clinicaltrials.gov at the U.S. National Library of Medicine (NCT02516475).


2018 ◽  
Vol 314 (4) ◽  
pp. E396-E405 ◽  
Author(s):  
Jasper Most ◽  
L. Anne Gilmore ◽  
Steven R. Smith ◽  
Hongmei Han ◽  
Eric Ravussin ◽  
...  

Calorie restriction (CR) triggers benefits for healthspan including decreased risk of cardiometabolic disease (CVD). In an ancillary study to CALERIE 2, a 24-mo 25% CR study, we assessed the cardiometabolic effects of CR in 53 healthy, nonobese (BMI: 22–28 kg/m2) men ( n = 17) and women ( n = 36). The aim of this study was to investigate whether CR can reduce risk factors for CVD and insulin resistance in nonobese humans and, moreover, to assess whether improvements are exclusive to a period of weight loss or continue during weight maintenance. According to the energy balance method, the 25% CR intervention ( n = 34) produced 16.5 ± 1.5% (mean ± SE) and 14.8 ± 1.5% CR after 12 and 24 mo (M12, M24), resulting in significant weight loss (M12 −9 ± 0.5 kg, M24 −9 ± 0.5 kg, P < 0.001). Weight was maintained in the group that continued their habitual diet ad libitum (AL, n = 19). In comparison to AL, 24 mo of CR decreased visceral (−0.5 ± 0.01 kg, P < 0.0001) and subcutaneous abdominal adipose tissue (−1.9 ± 0.2kg, P < 0.001) as well as intramyocellular lipid content (−0.11 ± 0.05%, P = 0.031). Furthermore, CR decreased blood pressure (SBP −8 ± 3 mmHg, P = 0.005; DBP −6 ± 2 mmHg, P < 0.001), total cholesterol (−13.6 ± 5.3 mg/dl, P = 0.001), and LDL-cholesterol (−12.9 ± 4.4 mg/dl, P = 0.005), and the 10-yr risk of CVD-disease was reduced by 30%. Homeostasis model assessment of insulin resistance (HOMA-IR) decreased during weight loss in the CR group (−0.46 ± 0.15, P = 0.003), but this decrease was not maintained during weight maintenance (−0.11 ± 0.15, P = 0.458). In conclusion, sustained CR in healthy, nonobese individuals is beneficial in improving risk factors for cardiovascular and metabolic disease such as visceral adipose tissue mass, ectopic lipid accumulation, blood pressure, and lipid profile, whereas improvements in insulin sensitivity were only transient.


2020 ◽  
Vol 41 (36) ◽  
pp. 3421-3432 ◽  
Author(s):  
Alexander J M Brown ◽  
Stephen Gandy ◽  
Rory McCrimmon ◽  
John Graeme Houston ◽  
Allan D Struthers ◽  
...  

Abstract Aim We tested the hypothesis that dapagliflozin may regress left ventricular hypertrophy (LVH) in people with type 2 diabetes (T2D). Methods and results We randomly assigned 66 people (mean age 67 ± 7 years, 38 males) with T2D, LVH, and controlled blood pressure (BP) to receive dapagliflozin 10 mg once daily or placebo for 12 months. Primary endpoint was change in absolute left ventricular mass (LVM), assessed by cardiac magnetic resonance imaging. In the intention-to-treat analysis, dapagliflozin significantly reduced LVM compared with placebo with an absolute mean change of −2.82g [95% confidence interval (CI): −5.13 to −0.51, P = 0.018]. Additional sensitivity analysis adjusting for baseline LVM, baseline BP, weight, and systolic BP change showed the LVM change to remain statistically significant (mean change −2.92g; 95% CI: −5.45 to −0.38, P = 0.025). Dapagliflozin significantly reduced pre-specified secondary endpoints including ambulatory 24-h systolic BP (P = 0.012), nocturnal systolic BP (P = 0.017), body weight (P &lt; 0.001), visceral adipose tissue (VAT) (P &lt; 0.001), subcutaneous adipose tissue (SCAT) (P = 0.001), insulin resistance, Homeostatic Model Assessment of Insulin Resistance (P = 0.017), and high-sensitivity C-reactive protein (hsCRP) (P = 0.049). Conclusion Dapagliflozin treatment significantly reduced LVM in people with T2D and LVH. This reduction in LVM was accompanied by reductions in systolic BP, body weight, visceral and SCAT, insulin resistance, and hsCRP. The regression of LVM suggests dapagliflozin can initiate reverse remodelling and changes in left ventricular structure that may partly contribute to the cardio-protective effects of dapagliflozin. ClinicalTrials.gov Identifier NCT02956811


2018 ◽  
Vol 7 ◽  
pp. e692
Author(s):  
Haseeb Sattar ◽  
Huqun Li ◽  
Yong Han ◽  
Hong Zhou ◽  
Sanaz Darbalaei ◽  
...  

Background: Metabolic syndrome is a group of different disorders mainly includes, insulin resistance, obesity, cerebrovascular disorders, dyslipidemia, which leads to increase mortality. Patients suffering from related psychotic disorders such as schizophrenia are at the higher risk of developing metabolic syndrome. The aim of this study was to evaluate the association between the first episode of schizophrenia, metabolic syndrome and insulin resistance-related proteins in blood and adipose tissue of mice.Materials and Methods: Twelve, female Balb/c mice were randomly divided into two groups; one group was injected intraperitoneal MK-801 (0.6mg/kg/d) to induce schizophrenia, and other group received the 0.9% normal saline for two weeks. Body weight, fasting blood glucose (FBG), oral glucose tolerance (OGT), and Homeostatic model assessment (HOMA), were observed. Blood and adipose tissue were collected and Western blotting was done to evaluate the insulin resistance related proteins (GGPPS, FAT, PTP-1B, GRK2, ATGL, FGF21, and PGC-1α) by using GAPDH as an internal standard. Results: There was a significant increase in mean body weight in schizophrenic group (21.76 vs 22.81, P=004). On day 14, the FBG, insulin concentrations and Homeostatic model assessment and insulin resistance (HOME-IR) were high in schizhphrenic group vs control group, e.g. 5.3±0.6 vs 3.47±0.2 (P=0.0001), 28.9±2.2 vs 23.3±0.6 (P<0.005) and 9.2±1.3 vs 3.9±0.2 (P=0.0001) . Impaired glucose tolerance deranged from 4.8mmol/L to 6.4mmol/L. Western blotting showed a marked increase in the expression of GGPPS, FAT, ATGL, and FGF21 proteins in monocytes and PTP-1B, GRK2, and PGC-1α ratios in adipose tissues.Conclusion: There was a positive relation between schizophrenia and metabolic syndrome e.g. insulin resistance and obesity. Certain proteins in adipocytes and blood were responsible for causing insulin resistance. [GMJ.2018;7:e692]


2019 ◽  
Author(s):  
Frederique Van de Velde ◽  
Margriet Ouwens ◽  
Arsene-Helene Batens ◽  
Samyah Shadid ◽  
Bruno Lapauw ◽  
...  

Author(s):  
Jalaledin Mirzay Razzaz ◽  
Hossein Moameri ◽  
Zahra Akbarzadeh ◽  
Mohammad Ariya ◽  
Seyed ali Hosseini ◽  
...  

Abstract Objectives Insulin resistance is the most common metabolic change associated with obesity. The present study aimed to investigate the relationship between insulin resistance and body composition especially adipose tissue in a randomized Tehrani population. Methods This study used data of 2,160 individuals registered in a cross-sectional study on were randomly selected from among subjects who were referred to nutrition counseling clinic in Tehran, from April 2016 to September 2017. Insulin resistance was calculated by homeostasis model assessment formula. The odds ratio (95% CI) was calculated using logistic regression models. Results The mean age of the men was 39 (±10) and women were 41 (±11) (the age ranged from 20 to 50 years). The risk of increased HOMA-IR was 1.03 (95% CI: 1.01–1.04) for an increase in one percent of Body fat, and 1.03 (95% CI: 1.00–1.05) for an increase in one percent of Trunk fat. Moreover, the odds ratio of FBS for an increase in one unit of Body fat percent and Trunk fat percent increased by 1.05 (adjusted odds ratio [95% CI: 1.03, 1.06]) and 1.05 (95% CI: 1.02, 1.08). Also, the risk of increased Fasting Insulin was 1.05 (95% CI: 1.03–1.07) for an increase in one unit of Body fat percent, and 1.05 (95% CI: 1.02–1.08) for an increase in one unit of Trunk fat percent. Conclusions The findings of the present study showed that there was a significant relationship between HOMA-IR, Fasting blood sugar, Fasting Insulin, and 2 h Insulin with percent of Body fat, percent of Trunk fat.


2003 ◽  
Vol 149 (4) ◽  
pp. 331-335 ◽  
Author(s):  
JV Silha ◽  
M Krsek ◽  
JV Skrha ◽  
P Sucharda ◽  
BL Nyomba ◽  
...  

OBJECTIVE: Adipose tIssue regulates insulin sensitivity via the circulating adipocytokines, leptin, resistin and adiponectin. The objective of this study was to compare the levels of resistin, adiponectin and leptin in lean and obese subjects and determine the relationship between circulating adipocytokines and insulin resistance. METHODS: We examined plasma levels of resistin, adiponectin and leptin in 17 lean subjects with a mean body mass index (BMI) of approximately 23 and 34 non-diabetic obese individuals with a mean BMI approximately 33. Insulin resistance was assessed using the homeostasis model assessment ratio (HOMA-R) formula derived from fasting insulin and glucose levels. RESULTS: Resistin levels were not significantly different between the two groups but were significantly higher in women compared with men, 35.4+/-6.5 (s.e.) vs 15.4+/-2.9 microg/L, P<0.01. Resistin did not correlate with BMI but did significantly correlate with HOMA-R, P<0.01, and this correlation remained significant after adjustment for gender and BMI. Adiponectin levels were significantly lower in obese compared with lean subjects, P<0.005, and higher in women, P<0.001, but showed no significant correlation with HOMA-R. Leptin levels were significantly higher in obese subjects and women and correlated with HOMA-R and resistin. DISCUSSION: In this small group of patients we demonstrated that insulin resistance correlated most strongly with leptin levels. A significant correlation between resistin levels and insulin resistance was also observed. Although a similar trend was apparent for adiponectin, the correlation with insulin resistance did not achieve statistical significance.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


2017 ◽  
Vol 313 (6) ◽  
pp. E731-E736 ◽  
Author(s):  
Wenjuan Wang ◽  
Xiangzhi Meng ◽  
Chun Yang ◽  
Dongliang Fang ◽  
Xuemeng Wang ◽  
...  

Loss of body weight and fat mass is one of the nonmotor symptoms of Parkinson’s disease (PD). Weight loss is due primarily to reduced energy intake and increased energy expenditure. Whereas inadequate energy intake in PD patients is caused mainly by appetite loss and impaired gastrointestinal absorption, the underlying mechanisms for increased energy expenditure remain largely unknown. Brown adipose tissue (BAT), a key thermogenic tissue in humans and other mammals, plays an important role in thermoregulation and energy metabolism; however, it has not been tested whether BAT is involved in the negative energy balance in PD. Here, using the 6-hydroxydopamine (6-OHDA) rat model of PD, we found that the activity of sympathetic nerve (SN), the expression of Ucp1 in BAT, and thermogenesis were increased in PD rats. BAT sympathetic denervation blocked sympathetic activity and decreased UCP1 expression in BAT and attenuated the loss of body weight in PD rats. Interestingly, sympathetic denervation of BAT was associated with decreased sympathetic tone and lipolysis in retroperitoneal and epididymal white adipose tissue. Our data suggeste that BAT-mediated thermogenesis may contribute to weight loss in PD.


Sign in / Sign up

Export Citation Format

Share Document