The dispersion of brood galleries of Xyleborus fornicatus Eichh. (Coleoptera, Scolytidae) in tea plants

1975 ◽  
Vol 65 (3) ◽  
pp. 501-506 ◽  
Author(s):  
P. Sivapalan

AbstractThe dispersion and density of brood galleries of the wood-boring ambrosia beetle, Xyleborus fornicatus Eichh., in the tea plant depends on the type of branch (primary, secondary and tertiary) and not on the total available length of branch nor on branch thickness. Within the different branch types, branch lengths and the numbers of galleries contained in them are directly related. Significantly more galleries are formed in the primary branches than in the secondaries, which themselves carry more than the tertiaries. For precise estimation of Xyleborus population density, a stratified sampling system, representing the different branch classes, will be required.

2018 ◽  
Vol 19 (11) ◽  
pp. 3683 ◽  
Author(s):  
Santosh KC ◽  
Meiya Liu ◽  
Qunfeng Zhang ◽  
Kai Fan ◽  
Yuanzhi Shi ◽  
...  

The qualities of tea (Camellia sinensis) are not clearly understood in terms of integrated leading molecular regulatory network mechanisms behind inorganic phosphate (Pi) limitation. Thus, the present work aims to elucidate transcription factor-dependent responses of quality-related metabolites and the expression of genes to phosphate (P) starvation. The tea plant organs were subjected to metabolomics analysis by GC×GC-TOF/MS and UPLC-Q-TOF/MS along with transcription factors and 13 metabolic genes by qRT-PCR. We found P starvation upregulated SPX2 and the change response of Pi is highly dependent on young shoots. This led to increased change in abundance of carbohydrates (fructose and glucose), amino acids in leaves (threonine and methionine), and root (phenylalanine, alanine, tryptophan, and tyrosine). Flavonoids and their glycosides accumulated in leaves and root exposed to P limitation was consistent with the upregulated expression of anthocyanidin reductase (EC 1.3.1.77), leucoanthocyanidin dioxygenase (EC 1.4.11.19) and glycosyltransferases (UGT78D1, UGT78D2 and UGT57L12). Despite the similar kinetics and high correlation response of Pi and SPX2 in young shoots, predominating theanine and other amino acids (serine, threonine, glutamate, valine, methionine, phenylalanine) and catechin (EGC, EGCG and CG) content displayed opposite changes in response to Pi limitation between Fengqing and Longjing-43 tea cultivars.


2018 ◽  
Vol 19 (12) ◽  
pp. 3938 ◽  
Author(s):  
Chi-Hui Sun ◽  
Chin-Ying Yang ◽  
Jason Tzen

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.


2021 ◽  
pp. 83-90
Author(s):  
Faris Nur Fauzi Athallah ◽  
Restu Wulansari ◽  
Eko Pranoto ◽  
Muhammad Alimin

Input factor is one of the determinator the quality and response of the tea plant growth. Inorganic fertilizer input still dominates in Indonesian plantations due to the lack of comprehensive evaluation of organic fertilizers, especially in liquid form. This study aims to determine the effect of inorganic and organic liquid fertilizer applications and the frequency of their application on the growth of tea plants. The experiment was carried out based on a Randomized Block Design (RBD) consisting of six treatment combinations, including tap water application once a week, tap water once every two weeks, 1% urea once a week, 1% urea every two weeks, 1% POC once a week and 1% POC once every two weeks. Experiments were carried out on yielding tea plants with the 3rd year of pruning stage. The parameters observed were shoot production (kg/plot), weight of banji and pekoe (g/100g) and the ratio of banji/pekoe. The results showed that the application of urea foliar fertilizer and liquid organic fertilizer with different application frequencies did not have a significant effect on each observed parameter. Application of 1% liquid organic fertilizer once every two weeks has the potential to increase tea productivity by showing a relatively high production of tea (6,88 kg/plot) compared to other treatments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yufeng Shi ◽  
Xiaolan Jiang ◽  
Linbo Chen ◽  
Wei-Wei Li ◽  
Sanyan Lai ◽  
...  

Flavonoids, including flavonol derivatives, are the main astringent compounds of tea and are beneficial to human health. Many researches have been conducted to comprehensively identify and characterize the phenolic compounds in the tea plant. However, the biological function of tea flavonoids is not yet understood, especially those accumulated in floral organs. In this study, the metabolic characteristics of phenolic compounds in different developmental stages of flower buds and various parts of the tea flower were investigated by using metabolomic and transcriptomic analyses. Targeted metabolomic analysis revealed varying accumulation patterns of different phenolic polyphenol compounds during flowering; moreover, the content of flavonol compounds gradually increased as the flowers opened. Petals and stamens were the main sites of flavone and flavonol accumulation. Compared with those of fertile flowers, the content of certain flavonols, such as kaempferol derivatives, in anthers of hybrid sterile flowers was significantly low. Transcriptomic analysis revealed different expression patterns of genes in the same gene family in tea flowers. The CsFLSb gene was significantly increased during flowering and was highly expressed in anthers. Compared with fertile flowers, CsFLSb was significantly downregulated in sterile flowers. Further functional verification of the three CsFLS genes indicated that CsFLSb caused an increase in flavonol content in transgenic tobacco flowers and that CsFLSa acted in leaves. Taken together, this study highlighted the metabolic properties of phenolic compounds in tea flowers and determined how the three CsFLS genes have different functions in the vegetative and reproductive organs of tea plants. Furthermore, CsFLSb could regulated flavonol biosynthesis in tea flowers, thus influencing fertility. This research is of great significance for balancing the reproductive growth and vegetative growth of tea plants.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 651-655 ◽  
Author(s):  
Liping Zhang ◽  
Chen Shen ◽  
Jipeng Wei ◽  
Wenyan Han

6-Benzyladenine (6-BA) is a safe and efficient cytokinin. The adult tea plants of the cv. Longjing 43 were used in this study. The foliar portion of tea bushes were sprayed with different concentrations (50, 100, 200, or 400 mg·L−1) of 6-BA after heavy pruning, when three to four leaves grew out in late May. The effects of 6-BA application on the growth of the new shoots and lateral branches were quantified. After 5 months, treatments with 50, 100, 200, or 400 mg·L−1 6-BA suppressed plant height by 11.0%, 18.0%, 21.0%, or 22.0%, respectively; 6-BA at 100, 200, or 400 mg·L−1 decreased the number of lateral branches by 20.0%, 23.0%, or 18.0%, respectively. Meanwhile, treatments with 50, 200, or 400 mg·L−1 6-BA increased the length of lateral branches by 38.0%, 79.0%, or 81.0% respectively; 200 mg·L−1 6-BA increased the diameter of lateral branches by 8.0%. In addition, after 2 months, 50 or 200 mg·L−1 6-BA did not significantly affect the growth of functional leaves, 50, 100, or 200 mg·L−1 6-BA did not significantly affect photosynthetic rate (Pn) as compared with the control. Furthermore, 200 or 400 mg·L−1 6-BA significantly increased spring tea yield by 28.9% or 13.3%, respectively as compared with the control. In conclusion, 6-BA at the four concentrations promoted dwarfing and the formation of productive lateral branches and increased the spring yield, and 200 mg·L−1 6-BA exerted the best comprehensive effect.


Insects ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Christopher M. Ranger ◽  
Christopher T. Werle ◽  
Peter B. Schultz ◽  
Karla M. Addesso ◽  
Jason B. Oliver ◽  
...  

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are destructive wood-boring insects of horticultural trees. We evaluated long-lasting insecticide netting for protecting stems against ambrosia beetles. Container-grown eastern redbud, Cercis canadensis, trees were flood-stressed to induce ambrosia beetle attacks, and deltamethrin-treated netting was wrapped from the base of the stem vertically to the branch junction. Trees were deployed under field conditions in Ohio, Virginia, Tennessee, and Mississippi with the following treatments: (1) flooded tree; (2) flooded tree with untreated netting; (3) flooded tree with treated ‘standard mesh’ netting of 24 holes/cm2; (4) flooded tree with treated ‘fine mesh’ netting of 28 holes/cm2; and/or (5) non-flooded tree. Treated netting reduced attacks compared to untreated netting and/or unprotected trees in Mississippi in 2017, Ohio and Tennessee in 2018, and Virginia in 2017–2018. Inconsistent effects occurred in Mississippi in 2018. Fewer Anisandrus maiche, Xylosandrus germanus, and Xyleborinus saxesenii were dissected from trees deployed in Ohio protected with treated netting compared to untreated netting; trees deployed in other locations were not dissected. These results indicate long-lasting insecticide netting can provide some protection of trees from ambrosia beetle attacks.


2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Wei-Wei Deng ◽  
Min Li ◽  
Chen-Chen Gu ◽  
Da-Xiang Li ◽  
Lin-Long Ma ◽  
...  

Caffeine, a purine alkaloid, is a major secondary metabolite in tea leaves. The demand for low caffeine tea is increasing in recent years, especially for health reasons. We report a novel grafted tea material with low caffeine content. The grafted tea plant had Camellia sinensis as scions and C. oleifera as stocks. The content of purine alkaloids was determined in the leaves of one-year-old grafted tea plants by HPLC. We also characterized caffeine synthase (CS), a key enzyme involved in caffeine biosynthesis in tea plants, at the expression level. The expression patterns of CS were examined in grafted and control leaves by Western blot, using a self-prepared polyclonal antibody with high specificity and sensitivity. The expression of related genes ( TCS1, tea caffeine synthase gene, GenBank accession No. AB031280; sAMS, SAM synthetase gene, AJ277206; TIDH, IMP dehydrogenase gene, EU106658) in the caffeine biosynthetic pathway was investigated by qRT-PCR. HPLC showed that the caffeine content was only 38% as compared with the non-grafted tea leaves. Immunoblotting analysis showed that CS protein decreased by half in the leaves of grafted tea plants. qRT-PCR revealed no significant changes in the expression of two genes in the upstream pathway ( sAMS and TIDH), while the expression of TCS1 was greatly decreased (50%). Taken together, these data revealed that the low caffeine content in the grafted tea leaves is due to low TCS1 expression and CS protein accumulation.


2018 ◽  
Vol 159 ◽  
pp. 02025 ◽  
Author(s):  
Eflita Yohana ◽  
Mohammad Endy Yulianto ◽  
Shofwan Bahar ◽  
Azza Alifa Muhammad ◽  
Novi Laura Indrayani

Tea plants in Indonesia are derived from Carmelia sinensis var. assamica which contain catechin in quite high amount compared with other countries tea plant. Green tea is made by inactivating the oxidase / phenolase enzyme that presents in the fresh tea leaf buds from tea garden, by using hot steam to prevent the oxidation of the catechins. Drying process to reduce the moisture of tea, one of the method is by utilizing the dry air from dehumidification process. Liquid desiccant made from 50% concentration of CaCl2, the temperature is lowered to 10 °C and sprayed into the air stream which contains water vapor by using a 0.2 mm spraying nozzle so that mass transfer and latent heat occur in the dehumidifier. The result of air dehumidification process used for drying tea leaves. The air is able to dry the tea leaves from the weight of 58 grams to 47 grams. Then the liquid desiccant dehumidification process will be streamed into the humidifier, where the liquid desiccant regeneration process will have change into the initial concentration. The result of air humidification process has an average absolute humidity rise of 0.07 g/kg. The liquid desiccant regeneration process that happened continuously reaching the saturation point at 280 minutes. It can be concluded that the process of dehumidification-humidification is a fairly effective method for drying the tea leaves.


2020 ◽  
Vol 21 (16) ◽  
pp. 5684 ◽  
Author(s):  
Xiaochen Zhou ◽  
Lanting Zeng ◽  
Yingjuan Chen ◽  
Xuewen Wang ◽  
Yinyin Liao ◽  
...  

In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content—regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yadav KC ◽  
Ashok Parajuli ◽  
Bishnu Bahadur Khatri ◽  
Lila Devi Shiwakoti

Tea is a popular drink with refreshing and functional properties. Bud, 1st leaf, and 2nd leaf of five varieties of tea clones (Gumti Takda-78, Ambari, Chiniya, and Tinali, which are popular in tea plantation area of Nepal) were collected and used for preparing green and orthodox black tea to study antioxidant activity, phytochemicals profile, chemical content, and sensory parameters. One or two leaves were hand-plucked from each bush to get a sample of about 100 leaves and processed for green and orthodox black tea for different clones of tea plants. Phytochemicals, antioxidant activity, and caffeine content were found higher in bud followed by 1st leaf and 2nd leaf for all clones of tea plants. Both types of tea (green and black) from Gumti were significantly (p<0.05) higher having tannin content, flavonoid content, total polyphenol content, caffeine content, and IC50 value of 49.15 and 36.23 (mg GAE/g dry extract), 358.9 and 350.4 (mg QE/g dry extract), 590.5 and 570 (mg GAE/g dry extract), 2.85 and 2.94%, and 45.15 & 51.88 μg/mL, respectively. Green and orthodox tea from Takda-78 was found higher in caffeine content and the least in Tinali for both types of tea. Moisture, water extract, total ash, acid-insoluble ash, and crude fiber content in tea (green and black) from Gumti were found to be 5.4% & 5.37%, 65.89% & 71.46%, 5.524% & 6.52%, 0.46% & 0.57%, and 7.96% & 10.27%, respectively. The ratio of theaflavin and thearubigin (TF : TR) was found 1 : 8.61, 1 : 9.36, 1 : 9.70, 1 : 12.87, and 1 : 6.36 in Takda-78, Ambari, Gumti, Chiniya, and Tinali respectively. The total quality score in green tea (85.13%) and black tea (85.78%) from Gumti was significantly higher than others. Phytochemicals and antioxidant properties of green tea were significantly (p<0.05) higher than those of orthodox black tea for all clones of tea plant. This study suggests Gumti variety to be used in green and orthodox black tea processing for higher phytochemical, chemical, sensory quality, and antioxidant activity.


Sign in / Sign up

Export Citation Format

Share Document