Photosynthesis, chlorophyll content and ribulose diphosphate carboxylase activity in relation to yield in wheat genotypes

1979 ◽  
Vol 93 (1) ◽  
pp. 7-11 ◽  
Author(s):  
K. K. Murthy ◽  
M. Singh

SummaryPhotosynthetic rates, chlorophyll content and activity of ribulose 1,5-diphosphate carboxylase (RuDPC) were determined for 18 genotypes of wheat (Triticum aestivum L.) in pot culture. Measurements were made at various growth stages. Correlation studies between physiological characteristics and seed yield were made at each stage separately.Genotypic variations were observed at different growth and developmental stages in photosynthetic rates (1·8–2·7-fold), chlorophyll contents (1·2-fold) and enzyme activities (2-fold). Chlorophyll content and enzymic activity increased in plant leaves with advancing age while apparent rates of photosynthesis decreased.RuDPC activity in flag leaf at anthesis showed significant positive correlation with grain yield (r = 0·55). Other attributes did not show significant association with grain yield.

2005 ◽  
Vol 85 (1) ◽  
pp. 59-65 ◽  
Author(s):  
S. S. Malhi ◽  
L. Cowell ◽  
H. R. Kutcher

A field experiment was conducted to determine the relative effectiveness of various sources, methods, times and rates of Cu fertilizers on grain yield, protein concentration in grain, concentration of Cu in grain and uptake of Cu in grain of wheat (Triticum aestivum L.), and residual concentration of DTPA-extractable Cu in soil on a Cu-deficient soil near Porcupine Plain in northeastern Saskatchewan. The experiment was conducted from 1999 to 2002 on the same site, but the results for 2002 were not presented because of very low grain yield due to drought in the growing season. The 25 treatments included soil application of four granular Cu fertilizers (Cu lignosulphonate, Cu sulphate, Cu oxysulphate I and Cu oxysulphate II) as soil-incorporated (at 0.5 and 2.0 kg Cu ha-1), seedrow-placed (at 0.25 and 1.0 kg Cu ha-1) and foliar application of four solution Cu fertilizers (Cu chelate-EDTA, Cu sequestered I, Cu sulphate/chelate and Cu sequestered II at 0.25 kg Cu ha-1) at the four-leaf and flag-leaf growth stages, plus a zero-Cu check. Soil was tilled only once to incorporate all designated Cu and blanket fertilizers into the soil a few days prior to seeding. Wheat plants in the zero-Cu treatment exhibited Cu deficiency in all years. For foliar application at the flag-leaf stage, grain yield increased with all four of the Cu fertilizers in 2000 and 2001, and in all but Cu sequestered II in 1999. Foliar application at the four-leaf growth stage of three Cu fertilizers (Cu chelate-EDTA, Cu sequestered I and Cu sulphate/chelate), soil incorporation of all Cu fertilizers at 2 kg Cu ha-1 and two Cu fertilizers (Cu lignosulphonate and Cu sulphate) at 0.5 kg Cu ha-1 rate, and seedrow placement of two Cu fertilizers (Cu lignosulphonate and Cu sulphate) at 1 kg Cu ha-1 increased grain yield of wheat only in 2001. There was no effect of Cu fertilization on protein concentration in grain. The increase in concentration and uptake of Cu in grain from Cu fertilization usually showed a trend similar to grain yield. There was some increase in residual DTPA-extractable Cu in the 0–60 cm soil in Cu lignosulphonate, Cu sulphate and Cu oxysulphate II soil incorporation treatments, particularly at the 2 kg Cu ha-1 rate. In summary, the results indicate that foliar application of Cu fertilizers at the flag-leaf growth stage can be used for immediate correction of Cu deficiency in wheat. Because Cu deficiency in crops often occurs in irregular patches within fields, foliar application may be the most practical and economical way to correct Cu deficiency during the growing season, as lower Cu rates can correct Cu deficiency. Key words: Application time, Cu source, foliar application, granular Cu, growth stage, placement method, rate of Cu, seedrow-placed Cu, soil incorporation


2014 ◽  
Vol 94 (5) ◽  
pp. 891-903 ◽  
Author(s):  
M. R. Fernandez ◽  
W. E. May ◽  
S. Chalmers ◽  
M. E. Savard ◽  
A. K. Singh

Fernandez, M. R., May, W. E., Chalmers, S., Savard, M. E. and Singh, A. K. 2014. Are early foliar fungicide applications on durum wheat grown in southeast Saskatchewan beneficial in increasing grain productivity? Can. J. Plant. Sci. 94: 891–903. Producers have expressed interest in applying fungicides early in the development of durum wheat to reduce disease severity and increase grain yield. To address this issue, a field trial was conducted in southeast Saskatchewan (2004–2006) to determine the impacts of single and double foliar fungicide (tebuconazole) applications at various growth stages on leaf spotting, Fusarium head blight/Fusarium-damaged kernels, deoxynivalenol concentration, dark kernel discolouration, and grain traits of durum wheat. In most cases, application at stem elongation was not effective in reducing Fusarium diseases, or improving yield and grain characteristics. Application at flag leaf emergence was more effective, but for the most part, application at anthesis resulted in the most consistent reduction in disease levels, and improvement in test weight. Double fungicide applications (stem elongation or flag leaf emergence, and anthesis) were not more effective in disease control than a single application at anthesis. Grain yield did not differ significantly among any of the treatments. In contrast to Fusarium diseases and leaf spotting, fungicide applications at stem elongation and/or flag leaf emergence resulted in increased kernel weight and percentage dark kernel discolouration, which was significant in 2005 (10.53–10.60% total kernel discolouration in the stem and flag leaf treatments vs. 6.13% for the untreated control). In one or more years, kernel weight was negatively associated with Fusarium disease variables and leaf spotting, but positively associated with kernel discolouration. We conclude that under variable environmental conditions in Saskatchewan, early preventative fungicide use on durum wheat should not be recommended as a strategy to improve productivity, and might even result in increases in dark kernel discolouration and grain downgrading.


2012 ◽  
Vol 151 (5) ◽  
pp. 630-647 ◽  
Author(s):  
R. SANKARAPANDIAN ◽  
S. AUDILAKSHMI ◽  
V. SHARMA ◽  
K. GANESAMURTHY ◽  
H. S. TALWAR ◽  
...  

SUMMARYRecent trends in climate change resulting in global warming and extreme dry spells during rainy seasons are having a negative impact on grain and fodder production in rain-fed crops in India. Understanding the mechanisms of drought tolerance at various growth stages will help in developing tolerant genotypes. Crosses were made between elite and drought-tolerant sorghums, and F2and F3progenies were evaluated for drought tolerance in multiple locations. Twenty-five F4/F5derivatives along with drought-tolerant check plants (two high-yielding genotypes showing moderate drought tolerance: C43 (male parent of the commercial hybrid CSH 16, tolerant to drought) and CSV 17, (a pure line commercial cultivar released for drought-prone areas) were screened for drought tolerance under a factorial randomized block design with three replications during the rain-free months of April–June in 2007 and 2008 at Tamil Nadu Agricultural University, Kovilpatti, India. In each generation/year, four trials were conducted and water stress at different phases of crop growth,viz. vegetative, flowering and post-flowering (maturity), was imposed by withholding irrigation. Observations were recorded on grain and straw yields, plant height, number of roots, root length, leaf relative water content (LRWC), chlorophyll content and stomatal conductance under all treatments. The traits, grain yield, plant height, average root length and stomatal conductance showed significant mean sums of squares (SSs) for genotype × environment (G × E), suggesting that genotypes had significant differential response to the changing environments. Significant mean SSs due to G × E (linear) were obtained for straw yield, LRWC and chlorophyll content, indicating that the variability is partly genetic and partly influenced by environment. Grain yield was correlated with chlorophyll content (r = 0·43) at the vegetative stage, with number of roots (r = 0·49), LRWC (r = 0·51), chlorophyll content (r = 0·46) and stomatal conductance (r = −0·51) at the pre-flowering stage, and with LRWC (r = 0·50) and stomatal conductance (r = −0·40) at the post-flowering stage, under water stress. Partial least square (PLS) analysis showed that different traits were important for grain yield under water stress at different growth stages. Pyramiding the genes for the traits responsible for high grain yield under stress will help in developing stable genotypes at different stages of plant growth.


Author(s):  
Chandan Roy ◽  
Tirthartha Chattopadhyay ◽  
Rakesh Deo Ranjan ◽  
Wahid Ul Hasan ◽  
Abhishek Kumar ◽  
...  

Heat stress is a major production constraint of wheat in South Asia, particularly in the Gangetic plains of India and Bangladesh. The leaf chlorophyll status is a key determinant for a high rate of photosynthesis under stress. The present experiments included 238 genotypes in 2016–2017 and 321 genotypes in 2017–2018 under optimum and under heat stress conditions. Subsequently, a set of 100 genotypes selected on basis of the heat susceptibility index was evaluated in 2018–2019 under heat stress conditions to study the relationship between important physiological traits and yield under stress. A significant correlation of soil plant analysis development (SPAD) value of the two upper leaves with stay-green trait and grain yield indicates the importance of chlorophyll content, both in flag and penultimate leaf, in maintaining leaf areas under greenness (LAUG) and grain yield under heat stress. The SPAD in the flag and penultimate leaf was responsible for 8.8% and 10.9%, respectively, of the variation in grain yield. For the stay-green trait, 8.4% and 7.2 % of the variation was governed by the SPAD value in the flag and penultimate leaf, respectively. These results suggest that, in addition to the flag leaf, the chlorophyll status of the penultimate leaf can be an important criterion for the selection of superior wheat genotypes under heat stress. The genotypes SW-139; SW 108; DWR-F8-35-9-1; NHP-F8-130; DWR-F8-3-1 that maintained a high chlorophyll content in the flag and penultimate leaf can be used further in breeding programmes addressing heat resistance in wheat.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1991
Author(s):  
Imre Cseresnyés ◽  
Bettina Kelemen ◽  
Tünde Takács ◽  
Anna Füzy ◽  
Ramóna Kovács ◽  
...  

This study evaluated the concurrent application and the results of the root electrical capacitance (CR) and minirhizotron (MR) methods in the same plant populations. The container experiment involved three winter wheat cultivars, grown as sole crops or intercropped with winter pea under well-watered or drought-stressed conditions. The wheat root activity (characterized by CR) and the MR-based root length (RL) and root surface area (RSA) were monitored during the vegetation period, the flag leaf chlorophyll content was measured at flowering, and the wheat shoot dry mass (SDM) and grain yield (GY) were determined at maturity. CR, RL and RSA exhibited similar seasonal patterns with peaks around the flowering. The presence of pea reduced the maximum CR, RL and RSA. Drought significantly decreased CR, but increased the MR-based root size. Both intercropping and drought reduced wheat chlorophyll content, SDM and GY. The relative decrease caused by pea or drought in the maximum CR was proportional to the rate of change in SDM or GY. Significant linear correlations (R2: 0.77–0.97) were found between CR and RSA, with significantly smaller specific root capacitance (per unit RSA) for the drought-stress treatments. CR measurements tend to predict root function and the accompanying effect on above-ground production and grain yield. The parallel application of the two in situ methods improves the evaluation of root dynamics and plant responses.


2020 ◽  
Vol 12 (2) ◽  
pp. 107-113
Author(s):  
İ. Öztürk

Abstract. The purpose of the study was to assess the relationships between physiological parameters and grain yield of different bread wheat genotypes. In the present research a total of 25 bread wheat genotypes were tested during the 2016-2017 seasons under rainfed conditions. The experiment was conducted in a randomized complete blocks design with four replications. Grain yield, days of heading, plant height, biomass (NDVI) from GS25 up to GS85 growth stage, chlorophyll content (SPAD) during the heading stage, canopy temperature (CT) at GS60 and GS75 growth stages, and glaucousness were investigated. The results of variance analyses showed that there were significant differences (p<0.01) among genotypes for yield. The mean grain yield was 7948 kg ha-1 and yield ranged from 7033 kg ha-1 to 8759 kg ha-1, the highest grain yield performed by TE6744-16 line. According to the results, significant differences among cultivars in terms of plant height, days of heading, biomass, chlorophyll content, canopy temperature, glaucousness were found. TE6627-6 line had the highest chlorophyll content and also, chlorophyll content positively affected grain yield. Canopy temperature is generally related to yield under drought stress condition in bread wheat. In the study early maturing (days of heading) genotypes had lower canopy temperature. An increase in biomass after the heading phase has positively affected grain yield. In the study, no correlation was found between grain yield and biomass at GS25 and GS45 growth phase. There was a negative correlation between glaucousness with biomass at GS60, GS75 and GS85 growth phase. These results showed that physiological parameters such as biomass (at GS75 and GS85), canopy temperature (at GS60 and GS75), and chlorophyll content (at GS60), and glaucousness could be used for selection parameters under rainfed conditions for yield in bread wheat.


2021 ◽  
Vol 3 (2) ◽  
pp. 54
Author(s):  
Yheni Dwiningsih ◽  
Anuj Kumar ◽  
Julie Thomas ◽  
Charlez Ruiz ◽  
Jawaher Alkahtani ◽  
...  

Rice (Oryza sativa) is the staple food for more than half of the world population. Rice needs 2-3 times more water compared to other crops. Drought condition is one of the limited factor in rice production. Recombinant inbred line population derived from a cross between rice genotype tropical japonica Kaybonnet and indica ZHE733 named K/Z RIL population was used to identify candidate genes for chlorophyll content related to grain yield under drought condition. Chlorophyll content in the flag leaf of the rice plant is related to the grain yield since chlorophyll plays an important role in the photosynthesis. The K/Z RIL population was screened in the field at Fayetteville, Arkansas, USA by controlled drought stress treatment at the reproductive stage (R3), and the effect of drought stress was quantify by measuring chlorophyll content, flag leaf characteristics, and grain yield. Quantitative trait loci (QTL) analysis was performed with a set of 4133 single nucleotide polymorphism (SNP) markers by using QTL IciMapping software version 4.2.53. Candidate genes within the QTL regions were identified by using the MSU Rice Genome Annotation Project database release 7.0 as the reference. A total of eleven QTLs and forty-three candidate genes were identified for chlorophyll content related to the grain yield under drought condition. Most of the candidate genes involve in biological processes, molecular functions, and cell components. By understanding the genetic complexity of the chlorophyll content, this research provides information to develop drought-resistant rice varieties with greater productivity under drought stress condition.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Armin Saed-Moucheshi ◽  
Mohammad Pessarakli ◽  
Bahram Heidari

Multivariate statistical techniques were used to compare the relationship between yield and its related traits under noninoculated and inoculated cultivars with mycorrhizal fungus (Glomus intraradices); each one consisted of three wheat cultivars and four water regimes. Results showed that, under inoculation conditions, spike weight per plant and total chlorophyll content of the flag leaf were the most important variables contributing to wheat grain yield variation, while, under noninoculated condition, in addition to two mentioned traits, grain weight per spike and leaf area were also important variables accounting for wheat grain yield variation. Therefore, spike weight per plant and chlorophyll content of flag leaf can be used as selection criteria in breeding programs for both inoculated and noninoculated wheat cultivars under different water regimes, and also grain weight per spike and leaf area can be considered for noninoculated condition. Furthermore, inoculation of wheat cultivars showed higher value in the most measured traits, and the results indicated that inoculation treatment could change the relationship among morphological traits of wheat cultivars under drought stress. Also, it seems that the results of stepwise regression as a selecting method together with principal component and factor analysis are stronger methods to be applied in breeding programs for screening important traits.


1976 ◽  
Vol 27 (2) ◽  
pp. 235 ◽  
Author(s):  
KS Fischer ◽  
GL Wilson ◽  
I Duthie

A method based on 14CO2 uptake and carbon dioxide exchange in sorghum canopies at medium and high density populations allowed the estimation of photosynthesis by plant parts (heads, and leaves at each level of insertion) after anthesis. The relative importance of corresponding parts did not differ between populations, nor did photosynthetic rates per unit leaf area. The latter did decline with successive leaf position down the canopy but were generally compensated by increasing area of these leaves. Averaged over the two populations, which differed little, the heads provided 14% of canopy photosynthesis, and the flag leaf and leaves 2, 3 and 4 were responsible for 21, 24, 21 and 13% respectively. Greater leaf areas per unit land area in the higher population, for each leaf position, resulted in higher total canopy photosynthesis. Previous studies having shown that net photosynthesis after heading corresponds closely to grain yield, the relative importance of plant parts to overall net photosynthesis may be regarded as their relative contribution to grain filling. A direct estimate of their importance in this regard, based on another method, showed the head to contribute 17%, and the next four leaves 17, 25, 20 and 17%. Factors controlling photosynthetic rates of parts are discussed, and the estimates of the importance of photosynthetic sites to grain filling are compared with those reported in previous work. _____________________ *Part VI, Aust. J. Agric. Res., 27: 35 (1976).


2020 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Hyewon Kim ◽  
Woojung Kim ◽  
Sang Don Kim

Chemical spill accidents lead to environmental problems, especially for plants. Plant vegetation assessment is necessary after a chemical accident; however, conventional methods can be inaccurate and time-consuming. This study used the vegetation index (VI) extracted from unmanned aerial vehicle (UAV) multispectral imagery for crop damage assessment after chemical exposure. The chemical accident simulations were conducted by exposure of rice at five growth stages to four levels of toluene. The VI was measured at five days after damage and 67 days after planting. Physiological characteristics (chlorophyll content and grain yield) were also measured. As a result, the mean normalized difference VI (NDVI) of toluene-exposed rice was significantly decreased with respect to toluene exposure concentration increases at most growth stages. Recovery after toluene exposure was lower in rice exposed to higher concentrations at the earlier growth stages. The chlorophyll content and grain yield were also decreased after toluene exposure with respect to increasing toluene concentrations and showed positive correlations with the NDVI. It indicates that the NDVI is capable of reflecting the plant response to chemical exposure. Thus, the results demonstrated that the VI based on UAV multispectral imagery is feasible as an alternative for crop monitoring, damage assessment after chemical exposure, and yield prediction.


Sign in / Sign up

Export Citation Format

Share Document