The complexity of simple tillage systems

2009 ◽  
Vol 147 (4) ◽  
pp. 399-410 ◽  
Author(s):  
A. OSWALD ◽  
S. DE HAAN ◽  
J. SANCHEZ ◽  
R. CCANTO

SUMMARYIn the Central Peruvian highlands, potatoes are commonly cultivated by smallholder farmers in fields between 3500 and 4300 m asl. Severe climatic conditions, marginal soils and limited access to inputs and infrastructure define these challenging agro-ecological environments. To prepare an adequate seed bed for the potato and mitigate climatic, topographic and labour constraints, Andean farmers have developed distinct footplough-based tillage systems: barbecho, chiwa and chacmeo. A series of field experiments was conducted in 2005/06 and 2006/07 at four different locations to investigate the effect of three different tillage systems on potato tuber yield, varying factors such as cultivars and types and amounts of fertilizer applied. The objective was to improve understanding of the effect of these factors on potato yield and study the potential advantages and disadvantages of each tillage system.The study showed that the type of tillage influenced a great variety of factors. Farmers often use a combination of tillage systems as a strategy to diversify possible risks, considering trade-offs regarding productivity v. yield stability, internal v. external resource use, labour requirement during peak times v. more uniform distribution or extensive v. intensive production. The chiwa and to some extent the chacmeo tillage systems resulted in relatively constant and stable yields for different environments and genetic materials, whereas the more intensive barbecho system sought to optimize growth conditions for the potato crop but was more liable to stress and required external resources. Currently, farmers often use the barbecho system to produce commercial cultivars for the urban markets investing the greatest share of internal and external resources. They use the chiwa and chacmeo systems to produce diverse native cultivars for their home consumption, valorizing their taste, cooking qualities and lower resource requirements.

Author(s):  
V. Dumych ◽  

The purpose of research: to improve the technology of growing flax in the Western region of Ukraine on the basis of the introduction of systems for minimizing tillage, which will increase the yield of trusts and seeds. Research methods: field, laboratory, visual and comparative calculation method. Research results: Field experiments included the study of three tillage systems (traditional, canning and mulching) and determining their impact on growth and development and yields of trusts and flax seeds. The traditional tillage system included the following operations: plowing with a reversible plow to a depth of 27 cm, cultivation with simultaneous harrowing and pre-sowing tillage. The conservation system is based on deep shelfless loosening of the soil and provided for chiseling to a depth of 40 cm, disking to a depth of 15 cm, cultivation with simultaneous harrowing, pre-sowing tillage. During the implementation of the mulching system, disking to a depth of 15 cm, cultivation with simultaneous harrowing and pre-sowing tillage with a combined unit was carried out. Tillage implements and machines were used to perform tillage operations: disc harrow BDVP-3,6, reversible plow PON-5/4, chisel PCh-3, cultivator KPSP-4, pre-sowing tillage unit LK-4. The SZ-3,6 ASTPA grain seeder was used for sowing long flax of the Kamenyar variety. Simultaneously with the sowing of flax seeds, local application of mineral fertilizers (nitroammophoska 2 c/ha) was carried out. The application of conservation tillage allows to obtain the yield of flax trust at the level of 3,5 t/ha, which is 0,4 t/ha (12.9 %) more than from the area of traditional tillage and 0,7 t/ha (25 %) in comparison with mulching. In the area with canning treatment, the seed yield was the highest and amounted to 0,64 t/ha. The difference between this option and traditional and mulching tillage reaches 0,06 t/ha (10,3 %) and 0.10 t/ha (18.5 %), respectively. Conclusions. Preservation tillage, which is based on shelf-free tillage to a depth of 40 cm and disking to a depth of 15 cm has a positive effect on plant growth and development, yield and quality of flax.


Author(s):  
M. Novokhatskyi ◽  
◽  
V. Targonya ◽  
T. Babinets ◽  
O. Gorodetskyi ◽  
...  

Aim. Assessment of the impact of the most common systems of basic tillage and biological methods of optimization of nutrition regimes on the realization of the potential of grain productivity of soybean in the Forest-Steppe of Ukraine. Methods. The research used general scientific (hypothesis, experiment, observation) and special (field experiment, morphological analysis) methods Results. The analysis of the results of field experiments shows that the conservation system of soil cultivation, which provided the formation of 27.6 c/ha of grain, is preferable by the level of biological yield of soybean. The use of other systems caused a decrease in the biological yield level: up to 26.4 c/ha for the use of the traditional system, up to 25.3 c/ha for the use of mulching and up to 23.0 c/ha for the use of the mini-till. With the use of Groundfix, the average biological yield of soybean grain increases to 25.6 c / ha for application rates of 5 l/ha, and to 28.2 c/ha for application rates of 10 l/ha when control variants (without the use of the specified preparation) an average of 22.6 c/ha of grain was formed with fluctuations in soil tillage systems from 21.0 (mini-bodies) to 25.8 c/ha (traditional).The application of Groundfix (10 l/ha) reduced the seed abortion rate from 11.0% (average without biofertilizer variants) to 8.0%, forming the optimal number of stem nodes with beans, increasing the attachment height of the lower beans and improving other indicators of biological productivity soybeans. Conclusions. It has been found that the use of the canning tillage system generates an average of 27.6 cent soybean grains, which is the highest indicator among the main tillage systems within the scheme of our research. The use of Groundfix caused a change in this indicator: if the variants with a conservative system of basic tillage without the use of biological preparation (control) were formed on average 24.1 c/ha, the use of Ground Licks caused the increase of biological productivity up to 29.4 c/ha, and at a dose of 10 l/ha biological yield was 32.2 c/ha. It was found that both the use of Groundfix and the basic tillage system influenced the elements of the yield structure: the density of the plants at the time of harvest depended more on the tillage system than on the use of Groundfix; the use of Groundfix and increasing its dose within the scheme of our studies positively reflected on the density of standing plants; the height of attachment of the lower beans and reduced the abortion of the seeds.


Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 67-73 ◽  
Author(s):  
J. Dorado ◽  
J. P. Del Monte ◽  
C. López-Fando

In a semiarid Mediterranean site in central Spain, field experiments were conducted on a Calcic Haploxeralf (noncalcic brown soil), which had been managed with three crop rotations and two tillage systems (no-tillage and conventional tillage) since 1987. The crop rotations consisted of barley→vetch, barley→sunflower, and a barley monoculture. The study took place in two growing seasons (1992–1994) to assess the effects of management practices on the weed seedbank. During this period, spring weed control was not carried out in winter crops. In the no-tillage system, there was a significant increase in the number of seeds of different weed species: anacyclus, common purslane, corn poppy, knotted hedge-parsley, mouse-ear cress, spring whitlowgrass, tumble pigweed, venus-comb, andVeronica triphyllos.Conversely, the presence of prostrate knotweed and wild radish was highest in plots under conventional tillage. These results suggest large differences in the weed seedbank as a consequence of different soil conditions among tillage systems, but also the necessity of spring weed control when a no-tillage system is used. With regard to crop rotations, the number of seeds of knotted hedge-parsley, mouse-ear cress, and spring whitlowgrass was greater in the plots under the barley→vetch rotation. Common lambsquarters dominated in the plots under the barley→sunflower rotation, whereas venus-comb was the most frequent weed in the barley monoculture. Larger and more diverse weed populations developed in the barley→vetch rotation rather than in the barley→sunflower rotation or the barley monoculture.


Weed Science ◽  
1994 ◽  
Vol 42 (2) ◽  
pp. 184-194 ◽  
Author(s):  
Douglas A. Derksen ◽  
A. Gordon Thomas ◽  
Guy P. Lafond ◽  
Heather A. Loeppky ◽  
Clarence J. Swanton

Continuous-cropping conservation tillage systems may provide a viable alternative to the practice of summer fallow; however, concerns have been raised regarding potentially negative changes in weed communities in continuous cropping. Field experiments were established in Saskatchewan at three locations to determine the nature of weed community differences between a crop sequence with and without fallow in zero-, minimum-, and conventional-tillage systems from 1986 to 1990. Weed communities in continuous-cropping treatments tended to have greater total densities and were more similar in composition than crop-fallow treatments. Inclusion or exclusion of fallow within the rotation had a greater impact on weed community composition than did tillage system at Ituna and Waldron, but the reverse was true at Tadmore due to poor crop growth in all tillage systems. Differences in weed community composition were generally characterized by fluctuational changes in species associations. Volunteers of summer-annual crops, such as canola, flax, and barley, were associated with continuous cropping, but other species including perennial weeds, such as Canada thistle, perennial sowthistle, and quackgrass, were not strongly associated with the presence or absence of fallow. The practice of fallowing land to manage weeds may not be necessary.


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 386
Author(s):  
Liliana Mureșan ◽  
Doina Clapa ◽  
Orsolya Borsai ◽  
Teodor Rusu ◽  
Thomas T. Y. Wang ◽  
...  

Soybean is an important natural source of isoflavones, but their concentration is likely to be influenced by external factors, such as climatic conditions and soil tillage systems. However, there is minimal information about the effects of such external factors on the isoflavone concentration in soybeans grown in Europe. Therefore, in this study, field experiments were established in Romania to investigate the potential impacts of three different soil tillage systems—conventional, minimum tillage and no-tillage—on crop yields and the isoflavone concentration of soybeans for three experimental years, 2014–2016. Our experimental results indicated that the soil tillage systems had little impact on the soybean yields each year. However, the 2016 yield was found to be higher than the 2014 and 2015 yields under all three soil systems. For every experimental year, the higher yield was recorded by the conventional system, followed by the minimum tillage system and no-tillage system under first weed control (weed control two (wct2): S-metolaclor 960 g/L, imazamox 40 g/L and propaquizafop 100 g/L). Likewise, the soil tillage system did not have a significant influence on the total isoflavone concentrations. Nevertheless, we noticed some variations in the individual isoflavone concentration (daidzin, genistin, glycitin, daidzein, genistein) in each year. Altogether, the minimum tillage and no-tillage systems may be employed as a suitable soil tillage system in soybean farming without an impact on the total isoflavone.


2021 ◽  
Vol 6 (1) ◽  
pp. 21-27
Author(s):  
Olga Tsvilynyuk ◽  
◽  
Liliia Telehii ◽  

The use of synthetic phytohormones is a promising technology for intensification and greening of agricultural production. Salicylic acid, among the others, is of particular interest. It causes anti-stress activity in plants in response to various adverse environmental factors in the laboratory. The analysis of the results of model field experiments showed that the use of salicylic acid for pre-sowing treatment of beet seeds varieties "Detroit" and "Egyptian flat" improves the habitus of mature plants, increases their water conservation capacity under adverse growth conditions (concentration 1•10-4 M). In adverse climatic conditions (initially excess moisture, and during the period of active growth and accumulation of nutrients - drought), the mass of the roots of both varieties of beets doubled under the influence of salicylic acid at a concentration of 1•10-5 M and increased 1.7 times at a concentration of 1•10-4 M (Detroit beets). This indicates a variety-specific reaction of beet plants to different concentrations of salicylic acid used for pre-sowing seed treatment. The use of salicylic acid in the cultivation of beets can become a priority in the transition of agriculture to the principles of sustainable development in a changing climate.


2013 ◽  
Vol 27 (2) ◽  
pp. 133-141 ◽  
Author(s):  
A.M. Gajda ◽  
B. Przewłoka ◽  
K. Gawryjołek

Abstract The aim of this research was to evaluate changes in soil quality associated with the tillage system applied with chosen parameters of soil biological properties. The long-term field experiments were located at a private farm in Rogów (Zamooeć region, E Poland) on a silt soil and at the Experimental Station in Laskowice (Wrocław region, S-W Poland) on a sandy loam soil. Soil samples were collected from 0-15 and 15-30 cm layers. Winter wheat was grown under traditional, reduced and no-tillage systems. The analyses included estimations of microbial biomass C and N content, microbial respiration rate, activity of dehydrogenase and arylsulfatase, and fluorescein diacetate hydrolysis. After eight years the effects of tillage on both soils were clearly noticed. In general, the less disturbing tillage systems enhanced the increase of soil biological activity by 15-40%, on average, than conventional tillage system. The significant correlations between microbial biomass, and/or enzyme activities with total organic C content indicate that concentration of organic C in soil environment plays an extremely important role in enhancing the stabilization and activity of soil microorganisms, and protection of an extracellular enzymes. The studied parameters of soil biological activity showed their sensitivity to tillage applied and may be considered as an useful indicators of soil quality in monitoring all conditions alter soil environment.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2477
Author(s):  
Sergeja Adamič ◽  
Robert Leskovšek

Soybean (Glycine max (L.) Merr.) is the most important protein crop globally, with its cultivation area in Europe on the increase. To investigate how alternative tillage systems affect soybean growth, yield performance, and nitrogen fixation capacity in the early conversion period from conventional tillage to conservation and no-tillage practices, a field study was conducted in 2020 under the humid central European climatic conditions of Slovenia. A complete randomized block design with four repetitions was used for the three different tillage systems (conventional, conservation, and no-tillage). The results show that the majority of the studied soybean growth parameters (e.g., plant density, nodes per plant, and shoot and root dry matter) and the yield components (e.g., pods per plant, and 100-seed mass) were greatest for the reference conventional tillage system. The conventional system also showed significantly greater dry nodule mass (p < 0.01) and proportion of large-sized nodules (>4 mm) on both the tap root (p < 0.05) and the lateral roots (p < 0.001). A positive linear correlation between nitrogen content and nodule production in the roots also suggested increased nitrogen fixation for the conventional system. The less intensive conservation and no-tillage systems resulted in significantly greater soil compaction, which negatively affected early plant establishment and resulted in significantly decreased plant densities. Despite the large differences in plant stands and individual plant performances, no significant differences were seen for dry seed yields between these tillage systems. Dry seed yields for the conventional and conservation systems were 4.54 and 4.48 t ha−1, respectively, with only minor (non-significant) yield reduction for the no-tillage system, at 4.0 t ha−1. These data show that soybean cultivation in the early transition period to less intensive tillage systems have no major yield losses under these less suitable agro-climatic conditions if correct crop and weed management measures are implemented.


1998 ◽  
Vol 12 (4) ◽  
pp. 646-651 ◽  
Author(s):  
Brian L. S. Olson ◽  
David L. Regehr ◽  
Keith A. Janssen ◽  
Philip L. Barnes

Atrazine detection in drinking water has raised questions about how to reduce levels of this herbicide. Field experiments were conducted near Ottawa, KS, to determine atrazine levels in runoff from grain sorghum grown under three tillage systems in three growing seasons. Atrazine at 1.12 kg ai/ha was applied several weeks before planting to areas where no-till (NT), ridge-till (RT), and chisel-disk (CD) systems were used, followed by an additional 0.56 kg ai/ha applied at planting. Surface-water runoff was collected from enclosed metal frames within each tillage system, and total water runoff and atrazine concentration were determined and used to compute total atrazine loss. Atrazine loss was less from CD than from the other tillage systems in years when atrazine was soil incorporated. Atrazine loss was highly variable among years and tillage systems. This suggests that other factors besides till systems influenced atrazine runoff.


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 243-248 ◽  
Author(s):  
John W. Wilcut ◽  
Glenn R. Wehtje ◽  
T. Vint Hicks

Field experiments were conducted from 1985 to 1987 to evaluate herbicide systems for minimum-tillage and conventional-tillage peanut production. While acceptable weed control could be achieved in both tillage systems, minimum-tillage systems generally had to be more herbicide intensive. Preemergence or preplant-incorporated within-the-row applications of either ethalfluralin or pendimethalin plus postemergence applications of paraquat and sethoxydim provided Texas panicum control equivalent to preplant-incorporated applications of ethalfluralin or pendimethalin. Early-postemergence paraquat applications improved Florida beggarweed and pitted morningglory control in conventional-tillage systems at least 15% compared to the same systems without paraquat Control of bristly starbur and sicklepod in conventional-tillage systems did not increase with paraquat application. Broadleaf weed control did not differ between tillage systems, except pitted morningglory control was lower in the minimum-tillage system. Conventional-tillage peanuts produced yields 800 to 1900 kg/ha higher, depending on herbicide system, and also provided greater net returns than minimum-tillage peanuts. The greater yield and net returns in conventional- versus minimum-tillage systems were not attributed to weed control or disease problems.


Sign in / Sign up

Export Citation Format

Share Document