Voltage contrast: A powerful tool for VLSI circuit diagnosis

Author(s):  
A. R. Stivers

The advent of very large scale integration (VLSI) presents many new problems for integrated circuit (I.C.) diagnosis. Some I.C.s have over 100,000 transistors with less than 100 external leads with which the transistors can be tested. The geometries are now as small as 3 μm, smaller than can be probed mechanically. Along with the size, node capacitance and current drive are also reduced making a probe's capacitive load very detrimental to rise-time measurements. New processes have many layers of interconnect, leaving more and more of the circuit below passivation and therefore inaccessible to a mechanical probe, even after the removal of scratch protection. VLSI challenges I.C. diagnosis with more internal circuitry that becomes smaller and less accessible to conventional probes.Voltage contrast is an electron beam voltage probing technique especially suited to VLSI circuits. A properly modified SEM, used in the voltage contrast mode, provides both high resolution images of circuit voltages and also voltage waveforms of particular nodes.

1995 ◽  
Vol 18 (3) ◽  
pp. 179-202
Author(s):  
Umesh Kumar

In the last decade, an important shift has taken place in the design of hardware with the advent of smaller and denser integrated circuit packages. Analysis techniques are required to ensure the proper electrical functioning of this hardware. An efficient method is presented to model the parasitic capacitance of VLSI (very large scale integration) interconnections. It is valid for conductors in a stratified medium, which is considered to be a good approximation for theSi−SiO2system of which present day ICs are made. The model approximates the charge density on the conductors as a continuous function on a web of edges. Each base function in the approximation has the form of a “spider” of edges. Here the method used [1] has very low complexity, as compared to other models used previously [2], and achieves a high degree of precision within the range of validity of the stratified medium.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4771
Author(s):  
Hyunyul Lim ◽  
Minho Cheong ◽  
Sungho Kang

Scan structures, which are widely used in cryptographic circuits for wireless sensor networks applications, are essential for testing very-large-scale integration (VLSI) circuits. Faults in cryptographic circuits can be effectively screened out by improving testability and test coverage using a scan structure. Additionally, scan testing contributes to yield improvement by identifying fault locations. However, faults in circuits cannot be tested when a fault occurs in the scan structure. Moreover, various defects occurring early in the manufacturing process are expressed as faults of scan chains. Therefore, scan-chain diagnosis is crucial. However, it is difficult to obtain a sufficiently high diagnosis resolution and accuracy through the conventional scan-chain diagnosis. Therefore, this article proposes a novel scan-chain diagnosis method using regression and fan-in and fan-out filters that require shorter training and diagnosis times than existing scan-chain diagnoses do. The fan-in and fan-out filters, generated using a circuit logic structure, can highlight important features and remove unnecessary features from raw failure vectors, thereby converting the raw failure vectors to fan-in and fan-out vectors without compromising the diagnosis accuracy. Experimental results confirm that the proposed scan-chain-diagnosis method can efficiently provide higher resolutions and accuracies with shorter training and diagnosis times.


Author(s):  
Ayush Tiwari

Recently, consumption of power is key problem of logic circuits based on Very Large Scale Integration. More potentiality consumption isn’t considered an appropriate for storage cell life for the use in cell operations and changes parameters such as optimality, efficiency etc, more consumption of power also provides for minimization of cell storage cycle. In present scenario static consumption of power is major troubles in logic circuits based on CMOS. Layout of drainage less circuit is typically complex. Several derived methods for minimization of consumption of potentiality for logic circuits based on CMOS. For this research paper, a technique called Advance Leakage reduction (AL reduction) is proposed to reduce the leakage power in CMOS logic circuits. To draw our structure circuit related to CMOS like Inverter, inverted AND, and NOR etc. we have seen the power and delay for circuits. This paper incorporates, analyzing of several minimization techniques as compared with proposed work to illustrate minimization in ratio of energy and time usage and time duration for propagation. LECTOR, Source biasing, Stack ONOFIC method is observed and analyzed with the proposed method to evaluate the leakage power consumption and propagation delay for logic circuits based on CMOS. Entire work has done in LT Spice Software with 180nm library of CMOS.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3032
Author(s):  
Chung-Huang Yeh ◽  
Jwu-E Chen

An integrated-circuit testing model (DITM) is used to describe various factors that affect test yield during a test process. We used a probability distribution model to evaluate test yield and quality and introduced a threshold test and a guardband test. As a result of the development speed of the semiconductor manufacturing industry in the future being unpredictable, we use electrical properties of existing products and the current manufacturing technology to estimate future product-distribution trends. In the development of very-large-scale integration (VLSI) testing, the progress of testing technology is very slow. To improve product testing yield and quality, we change the test method and propose an unbalanced-test method, leading to improvements in test results. The calculation using our proposed model and data estimated by the product published by the IEEE International Roadmap for Devices and Systems (IRDS, 2017) proves that the proposed unbalanced-test method can greatly improve test yield and quality and achieve the goal of high-quality, near-zero-defect products.


1982 ◽  
Vol 18 ◽  
Author(s):  
S. Simon Cohen

The problem of low resistance ohmic contacts to silicon has been of considerable technological interest. In recent years this problem has received special attention owing to the effect of scaling in very-large-scale integration (VLSI) technology. The field of ohmic contacts to semiconductors comprises two independent parts. First there exists the material science aspect. The choice of a suitable metallization system, the proper semiconductor parameters and the method of the contact formation is not obvious. Then there is the question of the proper definition of the contact resistance and the way it is measured.Several methods for contact resistance determination have been introduced in the past. All seem to have some drawbacks that either limit their usefulness or raise doubts as to their validity in certain situations. We shall discuss the two-, three- and four-terminal resistor methods of measurement. Relevant theoretical considerations will also be included.For conventional integrated circuits with a moderate junction depth of 1–2 μm, aluminum is uniquely suited as a single-element metallization system. However, for VLSI applications it may become obsolete because of several well-defined metallurgical problems. Thus, other metallization systems have to be investigated. We shall briefly discuss some recent data on several other metallization systems. Finally, the problem of size effects on the contact resistance will be discussed. Recent experimental results suggest important clues regarding the development of alternative metallization systems for VLSI circuits and also point to revisions of estimates of achievable design rules.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (3) ◽  
pp. 39-48 ◽  
Author(s):  
James S. Im ◽  
Robert S. Sposili

The fabrication of thin-film-transistor (TFT) devices on a transparent substrate lies at the heart of active-matrix-liquid-crystal-display (AMLCD) technology. This is both good and bad. On one hand it is a difficult task to manufacture millions of intricate semiconductor devices reliably over such large display substrates. On the positive side, AMLCD technology can aspire to become much more than a “display” technology. The idea is as follows: It is possible for one to readily fabricate additional transistors to execute various electronic functions—those that would otherwise be handled by separate large-scale-integration (LSI) and very large-scale-integration (VLSI) circuits—on the periphery of the display. Since this can be done, in principle, with no—or a minimal number of—additional processing steps, substantial cost reduction is possible and significant value can be added to the final product.Doing so and doing it well can ultimately lead to “system-on-glass” products in which the entire electronic circuitry needed for a product is incorporated directly onto a glass substrate. This means that integrated active-matrix liquid-crystal displays (IAMLCDs) have the potential to bypass conventional Si-wafer-based products and may lead TFT technology to compete directly against Si-wafer-based monolithic integrated circuits.


TRANSIENT ◽  
2017 ◽  
Vol 6 (3) ◽  
pp. 476
Author(s):  
Brama Yoga Satria ◽  
Munawar Agus Riyadi ◽  
Muhammad Arfan

Very Large Scale Integration (VLSI) merupakan proses dari pembuatan sirkuit terpadu atau Integrated Circuit (IC) dengan cara menggabungkan ribuan rangkaian berbasis transistor ke dalam sebuah chip atau prosesor. Dengan adanya VLSI, ukuran dari devais elektronik berbasis transistor dapat dimampatkan agar menghemat area, biaya produksi, dan efek parasitik. Prosesor terdiri dari beberapa blok utama sebagai penunjang kerjanya, salah satu blok yang paling penting yaitu Arithmatic  Logic Unit (ALU). Salah satu contoh dari ALU sendiri yaitu adalah multiplier. Multiplier sangat penting untuk banyak dasar proses dari sebuah prosesor. Tujuan dari penelitian ini adalah merancang sebuah multiplier sekuensial 8-bit dengan teknologi 180nm. Multiplier dirancang dengan menggabungkan blok-blok pembangun seperti blok counter, adder, shift register, dan lain-lainnya. Penelitian ini menggunakan perangkat lunak electric untuk mendesain layout dan perangkat lunak LT-Spice untuk menguji fungsional, delay, dan kinerja dari hasil ekstraksi layout. Hasil perancangan ini secara fungsional telah berjalan dengan baik. Multiplier yang dirancang memiliki layout sebesar 3.725.150 lambda2 dengan nilai delay sebesar 4,428ns. Selain itu, frekuensi maksimum yang digunakan untuk mendapatkan hasil yang benar dari multiplier sekuensial 8-bit yaitu 50MHz.


2017 ◽  
Author(s):  
Vinícius Dos Santos Livramento ◽  
José Luís Güntzel

The evolution of CMOS technology made possible integrated circuits with billions of transistors assembled into a single silicon chip, giving rise to the jargon Very-Large-Scale Integration (VLSI). VLSI circuits span a wide range class of applications, including Application Specific Circuits and Systems-On-Chip. The latter are responsible for fueling the consumer electronics market, especially in the segment of smartphones and tablets, which are responsible for pushing hardware performance requirements every new generation. The required clock frequency affects the performance of a VLSI circuit and induces timing constraints that must be properly handled by synthesis tools. This thesis focuses on techniques for timing closure of cellbased VLSI circuits, i.e. techniques able to iteratively reduce the number of timing violations until the synthesis of the synchronous digital system reaches the specified target frequency.


2021 ◽  
Author(s):  
Jani Babu Shaik ◽  
Siona Menezes Picardo ◽  
Sonal Singhal ◽  
Nilesh Goel

Very Large Scale Integration (VLSI) based neuromorphic circuits also known as Silicon Neurons (SiNs) emulate the electrophysiological behavior of biological neurons. With the advancement in technology, neuromorphic systems also lead to various reliability issues and hence making their study important. Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI) are the two major reliability issues present in VLSI circuits. In this work, we have investigated the combined effect of BTI and HCI on the two types of integrate-and-fire based SiNs namely (a) Axon-Hillock and (b) Simplified Leaky integrate-and-fire circuits using their key performance parameters. Novel reliability-aware AH and SLIF circuits are proposed to mitigate the reliability issues. Proposed reliability-aware designs show negligible deviation in performance parameters after aging. The time-zero process variability analysis is also carried out for proposed reliability-aware SiNs. The power consumption of existing and proposed reliability-aware neuron circuits is analyzed and compared.<br>


Author(s):  
Jonathan Allen

Within two years, both the required algorithmic competence and the necessary integrated circuit technology will have been developed to a point where practical personal reading machines for the blind will be possible. In this paper, the linguistic and phonetic principles needed to convert optically recognized text to speech are discussed, and it is shown how they mirror the human cognitive ability to read aloud. A perspective on the current status and rate of progress of large scale integration technology is then used to show that economical implementations of even complex text-to-speech algorithms can be realized in the short-term future. Finally, a view of important human factors problems requiring attention is given.


Sign in / Sign up

Export Citation Format

Share Document