Platinum-TiO2 (Rutile) Substrate Interaction During Cyclic Oxidation-Reduction Heat-Treatment

Author(s):  
S. Shinozaki ◽  
W. T. Donlon ◽  
A. H. Meitzler

When polycrystalline TiO2 (rutile) pellets (∼1mm in thickness and ∼3 mm in diameter), dispersed with Pt particles to act as a catalyst, were heat-treated under certain conditions involving an applied electric field, new unusual microstructures were formed. The heat-treatment procedure was, as follows: 1) apply 1 volt dc field between two Pt electrodes inbedded into the pellet, 2) heat the sample to 750°C and begin cycling the sample between oxydizing (4% O2 in N2) and reducing (2% CO in N2) atmospheres at a rate of several cycles per hour, 3) lower the temperature to 600°C while continually cycling (200 cycle), and, 4) cool the sample to room temperature under the reducing atmosphere (1). The pellet was ion milled to a proper electron transparency and examined by means of a Siemens EM102 and a Philips EM400 TEM-STEM microscope.Some TiO2 grains in this sample exhibited no resolvable defect structure, except that the matrix appeared to be strained due to small defects (Fig. la).

2017 ◽  
Vol 19 (2) ◽  
pp. 181 ◽  
Author(s):  
Olzhas Kaipoldayev ◽  
Ye. Mukhametkarimov ◽  
Renata Nemkaeva ◽  
G. Baigarinova ◽  
Madi Aitzhanov ◽  
...  

Herein we show the effect of heat treatment of two dimensional layered titanium carbide structure (Ti3C2Tx), so called MXene. As prepared MXene has functional groups -OH, -F, -Cl. In order to remove the functional groups we heat treated the MXene in Ar (with 0.01% O2) and H2 (with 0.01% H2O) atmospheres. We discovered the significant decrease in the amount of functional groups (-F and -Cl) and increase in the -O content, which refers to the oxidation of the material. Also we determined the optimal regime for Raman spectroscopy in order to avoid any changes in the structure of the material. We revealed that titanium carbide changes its structure at 700 °C and 900 °C into two different titanium dioxide modifications like rutile and anatase in Ar (with 0.01% O2) atmosphere. Also there are small changes occurred in Ti3C2Tx structure and formation of amorphous carbon after 700 °C treatment in H2 (with 0.01% H2O) atmosphere and formation of TiO2 (rutile) at 900 °C. Energydispersive X-ray spectroscopy (EDX) revealed the reduction of functional groups at 700 °C in both atmospheres and total disappearance of –F and –Cl and increasing the oxygen at 900 °C. The huge increase of oxygen by atomic percent, can be explained by the initial oxygen content in argon and hydrogen gases.


2007 ◽  
Vol 345-346 ◽  
pp. 545-548
Author(s):  
Satoshi Emura ◽  
Masuo Hagiwara

A TiB particulate-reinforced Ti-22Al-27Nb (mol%) alloy, based on the orthorhombic intermetallic phase, was prepared using gas atomization powder metallurgy method. In the as-atomized condition, extremely fine TiB particulates of less than 1-μm diameter and 5-μm length were dispersed in the matrix. After annealing heat treatment (heat treated at 1423 K with subsequent furnace cooling), this composite exhibited a lamellar matrix microstructure and showed better creep properties than a composite produced using conventional ingot metallurgy method, with coarse TiB particulates of 5-μm diameter and 40-μm length. Coarsening of the matrix microstructure and growth of TiB particulates occurred after annealing heat treatment at higher temperature (ca. 1473 K). Creep-resistance improvement was also observed, which seemed to be mainly attribute to the effect of the matrix microstructure. From measurements of stress components and activation energy, all composites showed an identical creep mechanism: dislocation-controlled creep.


2007 ◽  
Vol 280-283 ◽  
pp. 341-344
Author(s):  
Xiao Lei Li ◽  
Yuan Fang Qu ◽  
Wei Bing Ma ◽  
Zhan Shen Zheng

Ni/BaTiO3 composite was prepared by decomposition of NiC2O4·2H2O/BaTiO3 precursor, which was prepared by precipitating of nickel in the form of oxalate into the BaTiO3 slurry. The composite must be sintered in reducing atmosphere. Otherwise NTC effect would be introduced. The prepared composite almost had no PTC effect. But PTC effect of the Ni/BaTiO3 composite can be effectively renewed by heat-treatment in air. Under a proper composition and method, the composite shows low room-temperature resistivity (ρRT=6.0 Ω·cm) and obvious PTC effect (ρmax/ρmin=102).


2007 ◽  
Vol 539-543 ◽  
pp. 4526-4531 ◽  
Author(s):  
Araz Ardehali Barani ◽  
Dirk Ponge

In this study the effect of thermomechanical treatment on the microstructure of austenite and martensite and the mechanical properties of a medium carbon silicon chromium spring steel with different levels of impurities is investigated. Results are presented for conventional heat treatment and for thermomechanical treatment (TMT). Compared to conventionally heat treated samples austenite deformation improves strength and ductility. Thermomechanically treated samples are not prone to embrittlement by phosphorous. TMT influences the shape and distribution of carbides within the matrix and at prior austenite grain boundaries. It is shown that utilization of TMT is beneficial for increasing the ultimate tensile strength to levels above 2200 MPa and at the same time maintaining the ductility obtained at strength levels of 1500 MPa by conventional heat treatment. The endurance limit is increased and embrittlement does not occur.


1992 ◽  
Vol 262 ◽  
Author(s):  
M. Suezawa ◽  
A. Kasuya ◽  
Y. Nishina ◽  
K. Sumino

ABSTRACTHighly officient radiative recombination even at room temperature was found at a wavelength of about 1.3 μm in heat-treated Si-doped GaAs. The range of Si concentrations and the condition of heat-treatment to yield this intense luminescence were determined. Excitation spectra of the PL lines suggest that such PL lines are related to pairs of Si-donor and Si- acceptor and such pairs combined with gallium vacancies.


Author(s):  
П.А. Иванов ◽  
А.С. Потапов ◽  
М.Ф. Кудояров ◽  
М.А. Козловский ◽  
Т.П. Самсонова

AbstractIrradiation of crystalline n -type silicon carbide ( n -SiC) with high-energy (53-MeV) argon ions was used to create near-surface semi-insulating ( i -SiC) layers. The influence of subsequent heat treatment on the electrical characteristics of i -SiC layers has been studied. The most high-ohmic ion-irradiated i -SiC layers with room-temperature resistivity of no less than 1.6 × 10^13 Ω cm were obtained upon the heat treatment at 600°C, whereas the resistivity of such layers heat-treated at 230°C was about 5 × 10^7 Ω cm.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4481 ◽  
Author(s):  
Izabela Constantinoiu ◽  
Cristian Viespe

Regarding the use of hydrogen as a fuel, it is necessary to measure its concentration in air at room temperature. In this paper, sensitive composite films have been developed for surface acoustic wave (SAW) sensors, using quantum dots (QDs) and polymers. Si/SiO2 QDs were used due to having a high specific surface area, which considerably improves the sensitivity of the sensors compared to those that only have a polymer. Si/SiO2 QDs were obtained by laser ablation and analyzed by X-ray diffraction and transmission electron microscopy (TEM). Two types of polymers were used: polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA). Polymer and polymer with QDs compositions were deposited on the sensor substrate by drop casting. A heat treatment was performed on the films at 80 °C with a thermal dwell of two hours. The sensors obtained were tested at different hydrogen concentrations at room temperature. A limit of detection (LOD) of 452 ppm was obtained by the sensor with PDMS and Si/SiO2 QDs, which was heat treated. The results demonstrated the potential of using QDs to improve the sensitivity of the SAW sensors and to achieve a heat treatment that increases its adsorption capacity of the gas molecules.


1930 ◽  
Vol 2 (5) ◽  
pp. 327-340
Author(s):  
R. W. Moffatt

The investigation deals with the effect of low temperatures on the impact resistance of steel castings and forgings. Low, medium and high carbon steel castings and a few alloys of vanadium, nickel, and vanadium-nickel steel castings were examined. The metals were subjected to low temperatures, both before and after heat treatment. The temperatures for the tests varied from room temperatures to temperatures well below 0° F., so as to extend below the ordinary atmospheric range of temperatures found in northern climates.It was found that the impact resistances of the metals decreased for temperatures below the freezing point. For specimens, not heat treated, the impact resistance at − 40° F. may be only one-third to one-half of that at room temperature. Heat treatment increases the impact resistance at room temperatures and temperatures below the freezing point. The impact resistance at − 40° F. for the heat-treated metal compared favorably with the impact resistance of the untreated metal at room temperature, 68° F. Heat treatment may slightly lower the yield point and the ultimate tensile strength, but it increases the ductility and the impact resistance of the metal. By proper heat treatment of steel castings the impact resistance at − 40° F. may be brought over 300% higher than that of the untreated metal at that temperature.


1993 ◽  
Vol 309 ◽  
Author(s):  
J. Nucci ◽  
H. Neves ◽  
Y. Shacham ◽  
E. Eisenbraun ◽  
B. Zheng ◽  
...  

AbstractCopper thin films were deposited by sputtering, electron beam evaporation, and electroless plating onto nitride membranes for TEM analysis. The samples were heat treated in-situ from room temperature to 600 °C for structural and chemical analysis. The as-deposited and heat treated microstructures were investigated. Orientation changes with heat treatment and reactions among the sample layers were analyzed by electron diffraction. This work provides baseline information for a study of the thermal evolution of copper lines.


2015 ◽  
Vol 639 ◽  
pp. 361-368 ◽  
Author(s):  
Gabriella di Michele ◽  
Pasquale Guglielmi ◽  
Gianfranco Palumbo ◽  
Donato Sorgente

In this work the strain behaviour of the heat-treated 6xxx series aluminium alloy AC170PX is investigated by a not conventional approach. Thanks to the low density combined with good mechanical properties, this aluminium alloy is often adopted for automotive applications. Despite these advantages, its formability at room temperature is low. In order to overcome this limit, a distribution of the material properties can be achieved by a local heat treatment (Tailored Heat Treated Blanks). In this context, to evaluate the effects of those parameters mainly affecting the precipitation hardening (aging temperature and aging time), a first experimental campaign was conducted using conventional furnace heat treatment in different conditions . Tensile tests were run with the aim of determining the flow and the aging curves of the heat treated specimens. Starting from these results, a not uniform heat treatment was designed using a Gleeble physical simulator Heat treatments based on a temperature gradient along the sample were performed. Then, tensile tests of the so heated specimens were carried out at room temperature. Through a digital image correlation system both the distribution and the evolution of the strain along the gauge length of the specimen were analysed in order to obtain the hardening/softening working conditions related to a specific heating cycle. These results were validated by the comparison with the data obtained from the first experimental campaign.


Sign in / Sign up

Export Citation Format

Share Document