Materials science of cells: Electron probe x-ray microanalysis and x-ray mapping in biology

Author(s):  
Andrew P. Somlyo

The general aims of Electron Probe X-ray Microanalysis (EPMA) in Biology is similar to that in Materials Science: the determination of composition at sub-micron resolution. Special requirements include stringent precautions for specimen preparation, high sensitivity for detecting low concentrations of elements avoidance, and if not possible, quantitation and control of radiation damage, and spatial resolution of at least tens of nanometers.Special precautions for specimen preparation are dictated by the fact that biological materials exist in an aqueous milieu, and one of the most common objectives of biological EPMA is the localization and quantitation of diffusible elements. Therefore, specimen preparatory techniques must include handling of live tissues in a manner that maintains normal physiological states, and rapid freezing to trap diffusible elements in their physiological compartments. In order to obtain high spatial resolution, ultrathin cryosections have to be obtained, freeze dried and transferred to the microscope under conditions that prevent elemental translocations. Specimen temperatures during cryo-sectioning are usually at about -100°centigrade.

Author(s):  
A. LeFurgey ◽  
P. Ingram ◽  
L.J. Mandel

For quantitative determination of subcellular Ca distribution by electron probe x-ray microanalysis, decreasing (and/or eliminating) the K content of the cell maximizes the ability to accurately separate the overlapping K Kß and Ca Kα peaks in the x-ray spectra. For example, rubidium has been effectively substituted for potassium in smooth muscle cells, thus giving an improvement in calcium measurements. Ouabain, a cardiac glycoside widely used in experimental and clinical applications, inhibits Na-K ATPase at the cell membrane and thus alters the cytoplasmic ion (Na,K) content of target cells. In epithelial cells primarily involved in active transport, such as the proximal tubule of the rabbit kidney, ouabain rapidly (t1/2= 2 mins) causes a decrease2 in intracellular K, but does not change intracellular total or free Ca for up to 30 mins. In the present study we have taken advantage of this effect of ouabain to determine the mitochondrial and cytoplasmic Ca content in freeze-dried cryosections of kidney proximal tubule by electron probe x-ray microanalysis.


1988 ◽  
Vol 32 ◽  
pp. 115-120 ◽  
Author(s):  
D. A. Carpenter ◽  
M. A. Taylor ◽  
C. E. Holcombe

A laboratory-based X-ray microprobe, composed of a high-brilliance microfocus X-ray tube, coupled with a small glass capillary, has been developed for materials applications. Because of total external reflectance of X rays from the smooth inside bore of the glass capillary, the microprobe has a high sensitivity as well as a high spatial resolution. The use of X rays to excite elemental fluorescence offers the advantages of good peak-to-background, the ability to operate in air, and minimal specimen preparation. In addition, the development of laboratory-based instrumentation has been of Interest recently because of greater accessibility when compared with synchrotron X-ray microprobes.


Computed tomography is a method for obtaining a series of radiographic pictures of contiguous slices through a solid object such as the human body. Each picture is computed from a set of X-ray transmission measurements and represents the distribution of X-ray attenuation in the slice. The high sensitivity of the method to changes in both density and atomic number has resulted in the development of new diagnostic methods in medicine. The limitations of the method are discussed in terms of two particular kinds of application. First, those applications in which a very precise determination of density or atomic number is required, but at low spatial resolution; an example would be the determination of the uniformity of mixture of plastics or metals. The second kind of application is that requiring high spatial resolution as in the detection of cracks and the visualization of internal structures in complicated objects.


1997 ◽  
Vol 3 (S2) ◽  
pp. 913-914
Author(s):  
A.P. Somlyo

Ever since the recognition of calcium as a major intracellular messenger of signal transduction, its subcellular localization and intracellular movements have been intensively sought through electron and light optical methods. Electron probe microanalysis (EPMA), X-ray mapping, electron energy-loss spectroscopy (EELS) and energy-filtered imaging still provide the highest spatial resolution for measuring total calcium, whereas with light optical methods (fluorescent, luminescent and absorbance dyes) free [Ca2+]i can be measured with high sensitivity and time resolution. This presentation will summarize the relationship, whether collision or convergence, between the results of electron and light optical methods, with particular reference to mitochondrial Ca, and consider the potential for further improvements in detection sensitivity and spatial resolution.Sarcoplasmic and endoplasmic reticulum: Early attempts to quantitate Ca in cellular organelles with EPMA were directed at the sarcoplasmic reticulum (SR) of skeletal muscle, where EPMA could also address questions not amenable to studies of isolated SR.


Author(s):  
Gilbert G. Ahlstrand ◽  
Richard J. Zeyen

Numerous plant pathological investigations have been published where pathologists determined elemental differences between diseased and healthy plant tissue using unfractured bulk specimens and energy dispersive x-ray microanalysis (EDX). In these studies effects of specimen preparation procedures were largely ignored (1). Our objective was to compare bulk specimen preparation procedures using healthy leaf epidermal (surface) cells of barley, Hordeum vulgare, (Fig. 1) to determine advantages and disadvantages of each procedure for reference to future pathological work using EDX. Three preparation procedures were compared: 1) Frozen-hydrated (FH) specimens to maintain soluble and insoluble elements in situ; 2) Freeze-dried (FD) specimens to maintain total soluble and insoluble elements and allow deeper beam penetration than does FH, and; 3) Formalin/acetic acid/ethanol (FAA) fixed specimens, dehydrated in ethanol, and critical point dried (CD) using CO2, for determination of elemental loss in liquid fixatives (2,3).Aluminum specimen stubs were colloidal graphite coated (leaf segments attached to graphite areas) leaving clean Al margins for calibration.


1961 ◽  
Vol 5 ◽  
pp. 238-243 ◽  
Author(s):  
Dale A. Vaughan ◽  
Charles M. Schwartz

AbstractTwo high-temperature X-ray diffraction cameras are described which have been employed at Battelle to determine thermal expansion of metals and ceramic materials. Specimen preparation and temperature measurement and control are described. Lattice-parameter data vs. temperature are presented for uranium, uranium dioxide, and magnesium oxide.


Author(s):  
R. Hutchings ◽  
I.P. Jones ◽  
M.H. Loretto ◽  
R.E. Smallman

There is increasing interest in X-ray microanalysis of thin specimens and the present paper attempts to define some of the factors which govern the spatial resolution of this type of microanalysis. One of these factors is the spreading of the electron probe as it is transmitted through the specimen. There will always be some beam-spreading with small electron probes, because of the inevitable beam divergence associated with small, high current probes; a lower limit to the spatial resolution is thus 2αst where 2αs is the beam divergence and t the specimen thickness.In addition there will of course be beam spreading caused by elastic and inelastic interaction between the electron beam and the specimen. The angle through which electrons are scattered by the various scattering processes can vary from zero to 180° and it is clearly a very complex calculation to determine the effective size of the beam as it propagates through the specimen.


Author(s):  
J. R. Michael

X-ray microanalysis in the analytical electron microscope (AEM) refers to a technique by which chemical composition can be determined on spatial scales of less than 10 nm. There are many factors that influence the quality of x-ray microanalysis. The minimum probe size with sufficient current for microanalysis that can be generated determines the ultimate spatial resolution of each individual microanalysis. However, it is also necessary to collect efficiently the x-rays generated. Modern high brightness field emission gun equipped AEMs can now generate probes that are less than 1 nm in diameter with high probe currents. Improving the x-ray collection solid angle of the solid state energy dispersive spectrometer (EDS) results in more efficient collection of x-ray generated by the interaction of the electron probe with the specimen, thus reducing the minimum detectability limit. The combination of decreased interaction volume due to smaller electron probe size and the increased collection efficiency due to larger solid angle of x-ray collection should enhance our ability to study interfacial segregation.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 813
Author(s):  
Magdalena Świądro ◽  
Paweł Stelmaszczyk ◽  
Irena Lenart ◽  
Renata Wietecha-Posłuszny

The purpose of this study was to develop and validate a high-sensitivity methodology for identifying one of the most used drugs—ketamine. Ketamine is used medicinally to treat depression, alcoholism, and heroin addiction. Moreover, ketamine is the main ingredient used in so-called “date-rape” pills (DRP). This study presents a novel methodology for the simultaneous determination of ketamine based on the Dried Blood Spot (DBS) method, in combination with capillary electrophoresis coupled with a mass spectrometer (CE-TOF-MS). Then, 6-mm circles were punched out from DBS collected on Whatman DMPK-C paper and extracted using microwave-assisted extraction (MAE). The assay was linear in the range of 25–300 ng/mL. Values of limits of detection (LOD = 6.0 ng/mL) and quantification (LOQ = 19.8 ng/mL) were determined based on the signal to noise ratio. Intra-day precision at each determined concentration level was in the range of 6.1–11.1%, and inter-day between 7.9–13.1%. The obtained precision was under 15.0% (for medium and high concentrations) and lower than 20.0% (for low concentrations), which are in accordance with acceptance criteria. Therefore, the DBS/MAE/CE-TOF-MS method was successfully checked for analysis of ketamine in matrices other than blood, i.e., rose wine and orange juice. Moreover, it is possible to identify ketamine in the presence of flunitrazepam, which is the other most popular ingredient used in DRP. Based on this information, the selectivity of the proposed methodology for identifying ketamine in the presence of other components of rape pills was checked.


Sign in / Sign up

Export Citation Format

Share Document