scholarly journals Dietary and pharmacological compounds altering intestinal calcium absorption in humans and animals

2015 ◽  
Vol 28 (2) ◽  
pp. 83-99 ◽  
Author(s):  
Vanessa Areco ◽  
María Angélica Rivoira ◽  
Valeria Rodriguez ◽  
Ana María Marchionatti ◽  
Agata Carpentieri ◽  
...  

AbstractThe intestine is the only gate for the entry of Ca to the body in humans and mammals. The entrance of Ca occurs via paracellular and intracellular pathways. All steps of the latter pathway are regulated by calcitriol and by other hormones. Dietary and pharmacological compounds also modulate the intestinal Ca absorption process. Among them, dietary Ca and P are known to alter the lipid and protein composition of the brush-border and basolateral membranes and, consequently, Ca transport. Ca intakes are below the requirements recommended by health professionals in most countries, triggering important health problems. Chronic low Ca intake has been related to illness conditions such as osteoporosis, hypertension, renal lithiasis and incidences of human cancer. Carbohydrates, mainly lactose, and prebiotics have been described as positive modulators of intestinal Ca absorption. Apparently, high meat proteins increase intestinal Ca absorption while the effect of dietary lipids remains unclear. Pharmacological compounds such as menadione,dl-butionine-S,R-sulfoximine and ursodeoxycholic acid also modify intestinal Ca absorption as a consequence of altering the redox state of the epithelial cells. The paracellular pathway of intestinal Ca absorption is poorly known and is under present study in some laboratories. Another field that needs to be explored more intensively is the influence of the gene × diet interaction on intestinal Ca absorption. Health professionals should be aware of this knowledge in order to develop nutritional or medical strategies to stimulate the efficiency of intestinal Ca absorption and to prevent diseases.

2019 ◽  
Vol 25 (37) ◽  
pp. 4837-4853 ◽  
Author(s):  
Agata Jarząb ◽  
Wirginia Kukula-Koch

Background: Obesity in the 21st century society became an important health problem, alarming both the scientists and medicine doctors around the world. That is why, the search for new drug candidates capable to reduce the body weight is of high concern. Objective: This contribution tends to collect current findings on the biochemistry of obesity and on the application of plants and in particular turmeric tuber – a commonly used spice - as an anti-obesity agent. Methods: Following an introduction on the biochemical characteristics of obesity, the description of Curcuma secondary metabolites, their pharmacological applications and a study on the plants’ regulatory properties in obesity was summarized. Particular attention was paid to curcumin – the major metabolite present in the extracts of Curcuma spp., which is known to exhibit a variety of pharmacological actions. Also, the characteristics of some semisynthetic analogues of this ferulic acid derivative, characterized by a higher polarity and better bioavailability will be discussed. Results: Numerous scientific papers treat on the influence of turmeric on weight loss. Additionally, some of them describe its anti-inflammatory properties. Conclusions: This important spice tends to fight the 21st century plague, which is an excessive weight gain, related to the development of metabolic syndrome, to the occurrence of cardiovascular problems and diabetes, and, in consequence, leading to a significant shortening of life span. As herein proven, the extracts of turmeric play an important role in the regulation of inflammatory reactions which are evoked in the overweight patients, helping them reduce the excess body weight.


2020 ◽  
Vol 16 (7) ◽  
pp. 958-968
Author(s):  
Yunrui Cai ◽  
Tong Chen ◽  
Huajian Zhu ◽  
Hongbin Zou

Background: The development of novel antineoplastic agents remains highly desirable. Objective: This study focuses on the design, synthesis, and antitumor evaluation of phenyl ureas bearing 5-fluoroindolin-2-one moiety. Methods: Three sets of phenylureas were designed and synthesized and their antiproliferative ability was measured against four human carcinoma cell lines (Hela, Eca-109, A549, and MCF-7) via MTT assay. In vivo anticancer activity was further evaluated in xenograft models of human breast cancer (MCF-7). Results: A total of twenty-one new compounds were synthesized and characterized by means of 1H and 13C NMR as well as HR-MS. Three sets of compounds (1a‒1c, 2a‒2c, and 3a‒3c) were initially constructed, and preliminary antiproliferative activities of these molecules were evaluated against Hela, Eca-109, A549 and MCF-7, highlighting the meta-substituted phenylureas (1a‒1c) as the most cytotoxic set. A series of meta-substituted phenylureas derivatives (1d‒1o) were then designed and synthesized for structure-activity relationship study. Most of the new compounds showed desirable cytotoxicity, among which compound 1g exhibited the most remarkable cytotoxic effects against the tested human cancer cells with IC50 values ranging from 1.47 to 6.79 μM. Further studies showed that compound 1g suppressed tumor growth in human breast cancer (MCF- 7) xenograft models without affecting the body weight of its recipients. Conclusion: In this study, twenty-one new compounds, containing the privileged structures of phenylurea and 5-fluoroindolin-2-one, were designed and synthesized. Subsequent structureactivity studies showed that 1g was the most bioactive antitumor agent among all tested compounds, hence a potentially promising lead compound once given further optimization.


2011 ◽  
Vol 106 (5) ◽  
pp. 633-647 ◽  
Author(s):  
Bente E. Torstensen ◽  
Marit Espe ◽  
Ingunn Stubhaug ◽  
Øyvind Lie

In order to study whether lipid metabolism may be affected by maximum replacement of dietary fish oil and fish meal with vegetable oils (VO) and plant proteins (PP), Atlantic salmon (Salmo salarL.) smolts were fed a control diet containing fish oil and fish meal or one of three plant-based diets through the seawater production phase for 12 months. Diets were formulated to meet all known nutrient requirements. The whole-body lipid storage pattern was measured after 12 months, as well as post-absorptive plasma, VLDL and liver TAG. To further understand the effects on lipid metabolism, expression of genes encoding for proteins involved in VLDL assembly (apoB100), fatty acid uptake (FATP1, cd36, LPL and FABP3, FABP10 and FABP11) were measured in liver and visceral adipose tissue. Maximum dietary VO and PP increased visceral lipid stores, liver TAG, and plasma VLDL and TAG concentrations. Increased plasma TAG correlated with an increased expression of apoB100, indicating increased VLDL assembly in the liver of fish fed the high-plant protein- and VO-based diet. Atlantic salmon fed intermediate replacement levels of VO or PP did not have increased body fat or visceral mass. Overall, the present results demonstrate an interaction between dietary lipids and protein on lipid metabolism, increasing overall adiposity and TAG in the body when fish meal and fish oil are replaced concomitantly at maximised levels of VO and PP.


2005 ◽  
Vol 102 (4) ◽  
pp. 747-753 ◽  
Author(s):  
Luc J. Teppema ◽  
Raymonda R. Romberg ◽  
Albert Dahan

Background In subanesthetic concentrations, volatile anesthetics reduce the acute hypoxic response (AHR), presumably by a direct action on the carotid bodies but by an unknown molecular mechanism. To examine a possible involvement of reactive oxygen species or changes in redox state in this inhibiting effect, the authors studied the effect of antioxidants on the isoflurane-induced reduction of the AHR in humans. Methods In 10 volunteers, the authors studied the effect of antioxidants (intravenous ascorbic acid and oral alpha-tocopherol) on the reduction by isoflurane (0.12% end-tidal concentration) of the AHR on a 3-min isocapnic hypoxic stimulus (hemoglobin oxygen saturation 86 +/- 4%). All subjects participated in three separate sessions in which the effects of the antioxidants (session 1), placebo (session 2), and sham isoflurane plus antioxidants (session 3) were tested on the (sham) isoflurane-induced effect on the AHR. Results Isoflurane reduced the acute hypoxic response from 0.82 +/- 0.41 l . min . % to 0.49 +/- 0.23 l . min . % and from 0.89 +/- 0.43 l . min . % to 0.48 +/- 0.28 l . min . % in sessions 1 and 2, respectively (mean +/- SD; P < 0.05 vs. control). This reduction of the AHR was completely reversed by antioxidants (AHR = 0.76 +/- 0.39 l . min . %; not significantly different from control, session 1) but not by placebo in session 2 (AHR = 0.50 +/- 0.30 l . min . %; P < 005 vs. control). Sham isoflurane or antioxidants per se had no effect on the hypoxic response. Conclusions The data indicate that isoflurane may depress the AHR by influencing the redox state of oxygen-sensing elements in the carotid bodies. This finding may have clinical implications for patients who are prone to recurrent hypoxic episodes, e.g., due to upper airway obstruction, in the postoperative period when low-dose isoflurane may persist in the body for some time.


2017 ◽  
Vol 70 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Joyce A. Nettleton ◽  
Ingeborg A. Brouwer ◽  
Johanna M. Geleijnse ◽  
Gerard Hornstra

At a workshop to update the science linking saturated fatty acid (SAFA) consumption with the risk of coronary heart disease (CHD) and ischemic stroke, invited participants presented data on the consumption and bioavailability of SAFA and their functions in the body and food technology. Epidemiological methods and outcomes were related to the association between SAFA consumption and disease events and mortality. Participants reviewed the effects of SAFA on CHD, causal risk factors, and surrogate risk markers. Higher intakes of SAFA were not associated with higher risks of CHD or stroke apparently, but studies did not take macronutrient replacement into account. Replacing SAFA by cis-polyunsaturated fatty acids was associated with significant CHD risk reduction, which was confirmed by randomized controlled trials. SAFA reduction had little direct effect on stroke risk. Cohort studies suggest that the food matrix and source of SAFA have important health effects.


2020 ◽  
Vol 8 ◽  
Author(s):  
Kelly Stanford ◽  
Sharon Rutland ◽  
Craig J. Sturrock ◽  
Catrin Sian Rutland

Anatomy is the knowledge about the structure of the bodies of animals and people. This includes information about blood vessels, organs, the skeleton, and nerves. But have you ever wondered where the anatomical information in science books and websites comes from? When did our fascination with the body begin and why do people still study it now? Who teaches doctors, nurses, veterinary surgeons, and other health professionals about the body? How has anatomy inspired art, and vice versa? This paper looks at the amazing world of anatomy: what anatomy is; why it is needed; why it is important; who studies, teaches, and researches anatomy; and what the future holds for this fascinating science.


2015 ◽  
Vol 18 (2) ◽  
pp. 85-94
Author(s):  
Khai Quoc Le ◽  
Huong Thi Minh Nguyen ◽  
Hien Vu Quang Nguyen ◽  
Hieu Le Trung Nguyen ◽  
Linh Quang Huynh

Sleep disorders have become nowadays one of the most important health issues in the community; they will affect many functions of the body and regular physical activities. The goal of our research is implementation improvement of the software for polysomnography signal analysis based on AASM standards published in 2014 to create a comprehensive assessment method for different abnormalities or pathologic symptoms. By using a combination of different learning machine algorithms, program can flexibly update threshold and characteristics of polysomnography signal for each people and reduce errors in calculated results. The program is designed with friendly user interface without support of other special software. The results checked by comparative measurements with other facilities showed high reliability, which give the similarity over 83% for all data. The most advantage of the software is the ability to synchronize data and analysis results with other systems. Program can be decomposed in block modules, which can be easily integrated with other equipment to make independent and continuous diagnostic systems.


2021 ◽  
Vol 20 (4) ◽  
pp. 2746
Author(s):  
A. V. Svarovskaya ◽  
A. A. Garganeeva

Adipose tissue is currently regarded as a key organ for excess dietary lipids, which determine whether the body will maintain normal homeostasis or whether inflammation and insulin resistance will develop. In recent years, there is more information about novel prognostic models — the visceral adiposity index and the lipid accumulation product. The aim of this review was to analyze the results of studies examining the relationship between various indices of obesity and cardiometabolic risk. We analyzed 105 literature sources, 53 of which were ruled out, becausethe processes of interest were not described in detail or included anassessment of the relationship of various obesity indices with metabolic parameters. The results obtained indicate the advisability of using novel obesity indices, which have a good predictive ability and are simple and convenient to use. It is necessary to use additional methods of anthropometric and clinical examination in order to assess the metabolic phenotype of obesity, which will make it possible to stratify patients by the level of cardiometabolic risk.


2014 ◽  
Vol 54 (9) ◽  
pp. 1394 ◽  
Author(s):  
V. Oehlschlaeger ◽  
M. Wilkens ◽  
B. Schroeder ◽  
S. Daenicke ◽  
G. Breves

The combination of 25-hydroxyvitamin D3 (25-OHD3) and a diet negative in dietary cation anion difference (DCAD) has recently been shown to have beneficial effects on peripartal calcium (Ca) homeostasis in dairy cows. To further elucidate the underlying mechanisms, it was the aim of the experiments to investigate the effects of 25-OHD3 in combination with DCAD values about –70 meq/kg DM on pre-duodenal and overall gastrointestinal Ca absorption. A group of six ruminally fistulated lactating cows equipped with a cannula in the proximal duodenum were assigned to three dietary treatments (Control diet, anionic salts, anionic salts +25-OHD3) of 5 weeks each. Urine and faeces were collected quantitatively and flow of duodenal contents was calculated by applying chromium oxide. Blood samples were taken at regular intervals. Treatment with anionic salts and 25-OHD3 resulted in an increased Ca net absorption from the total gastrointestinal tract, which was mainly due to respective increases in intestinal Ca absorption. Furthermore, anionic salts and 25-OHD3-treated animals had significantly higher plasma phosphate concentrations and lower plasma levels of CrossLaps and the overall net absorption of phosphorus was significantly higher in these animals. From these data, it can be concluded that anionic salts in combination with 25-OHD3 positively influence the overall net Ca and phosphorus absorption, which is obviously associated with a reduced mobilisation of bone minerals as indicated by decreases in plasma CrossLaps concentrations.


Sci ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 90
Author(s):  
Dillon K. Jarrell ◽  
Seth Drake ◽  
Mark A. Brown

The development of targeted therapeutics for cancer continues to receive intense research attention as laboratories and pharmaceutical companies seek to develop drugs and technologies that improve treatment efficacy and mitigate harmful side effects. In the aftermath of World War I, it was discovered that mustard gas destroys rapidly dividing cells and could be used to treat cancer. Since then, chemotherapy has remained a predominant treatment for cancer; however, the destruction of dividing cells throughout the body yields devastating side effects including off-target damage of the digestive tract, bone marrow, skin, and reproductive tract. Furthermore, the high mutation rate of cancerous cells often renders chemotherapy ineffective long-term. Therapies with improved specificity, localization, and efficacy are redefining cancer treatment. Herein, we define and summarize the principal advancements in targeted cancer treatment and briefly comment on the march towards personalized medicine in the treatment of human cancer.


Sign in / Sign up

Export Citation Format

Share Document