scholarly journals Associations of dietary carbohydrate and fatty acid intakes with cognition among children

2020 ◽  
Vol 23 (9) ◽  
pp. 1657-1663
Author(s):  
Sehrish Naveed ◽  
Taisa Venäläinen ◽  
Aino-Maija Eloranta ◽  
Arja T Erkkilä ◽  
Henna Jalkanen ◽  
...  

AbstractObjective:To investigate the cross-sectional associations of dietary carbohydrate and fatty acid intakes with cognition in mid-childhood.Design:Dietary carbohydrate and fatty acid intakes were assessed using 4-d food records, and cognition was evaluated using the Raven’s Coloured Progressive Matrices (RCPM) score. The cross-sectional associations of dietary carbohydrate and fatty acid intakes with cognition were investigated using linear regression analyses adjusted for age, sex, body fat percentage, household income, parental education and daily energy intake.Setting:The baseline examinations of the Physical Activity and Nutrition in Children study.Participants:A population-based sample of 487 children (250 boys, 237 girls) aged 6–8 years living in the city of Kuopio, Finland.Results:A higher dietary intake of fructose (standardised regression coefficient, β = 0·24, P < 0·001), total fibre (β = 0·16, P = 0·02) and soluble fibre (β = 0·15, P = 0·02) was associated with a higher RCPM score in boys. Other dietary carbohydrates and fatty acids, including total carbohydrates, glucose, sucrose, starch, insoluble fibre, total fat, SFAs, MUFAs, PUFAs, palmitic acid (C16), stearic acid (C18), linoleic acid (C18:2), α-linoleic acid (C18:3), arachidonic acid (C20:4), EPA (C20:5n-3) and DHA (C22:6n-6), were not associated with the RCPM score in boys. Dietary carbohydrates or fatty acids were not associated with the RCPM score in girls.Conclusions:Higher dietary fructose and fibre intakes were associated with better cognition in boys, but not in girls. Dietary fatty acids were not related to cognition in boys or in girls.

1963 ◽  
Vol 205 (6) ◽  
pp. 1151-1153 ◽  
Author(s):  
E. S. Erwin ◽  
W. Sterner

Calves were fed from 5 to 85 days of age a synthetic milk that contained either 10% corn oil (ca. 50% linoleic acid) or 10% methyl myristate. The fatty acid composition of almost all tissues studied was altered to some extent by the change in dietary fatty acids. In the central nervous system, the medulla and spinal cord were resistant, but the peripheral nervous system (sympathetic trunk, brachial plexus, and vagus nerve) profoundly reflected alteration in dietary fatty acids. In peripheral nervous tissue from calves fed corn oil the proportion of linoleic acid increased from 2 to 5% to 25 to 30%. Similarly, in such tissues, myristic acid increased from 2 to 6% to 16 to 43% in methyl myristate-fed calves. Even the fatty acid composition of endocrine glands (pituitary, adrenal, and testis) reflected dietary fatty acids. The fatty acid composition of the skeletal muscle, adipose tissue, and aorta changed with different dietary fats. The greatest change occurred in the cardiac muscle and liver, in which the proportion of linoleic acid increased in the corn oil-fed calves to 50% of the total fatty acids.


2013 ◽  
Vol 17 (5) ◽  
pp. 1054-1060 ◽  
Author(s):  
Jinnie J Rhee ◽  
Eunyoung Cho ◽  
Walter C Willett

AbstractObjectiveAdjustment for body weight and physical activity has been suggested as an alternative to adjusting for reported energy intake in nutritional epidemiology. We examined which of these approaches would yield stronger correlations between nutrients and their biomarkers.DesignA cross-sectional study in which dietary fatty acids, carotenoids and retinol were adjusted for reported energy intake and, separately, for weight and physical activity using the residual method. Correlations between adjusted nutrients and their biomarkers were examined.SettingUSA.SubjectsCases and controls from a nested case–control study of erythrocyte fatty acids and CHD (n 442) and of plasma carotenoids and retinol and breast cancer (n 1254).ResultsCorrelations between intakes and plasma levels of trans-fatty acids were 0·30 (energy-adjusted) and 0·16 (weight- and activity-adjusted); for erythrocyte levels, the corresponding correlations were 0·37 and 0·25. Energy-adjusted intakes of linoleic acid and α-linolenic acid were more strongly correlated with their respective biomarkers than weight- and activity-adjusted intakes, but the differences were not significant except for linoleic acid (erythrocyte). Weight- and activity-adjusted DHA intake was slightly more strongly correlated with its plasma biomarker than energy-adjusted intake (0·37 v. 0·34). Neither method made a difference for DHA (erythrocyte), carotenoids and retinol.ConclusionsThe effect of energy adjustment depends on the nutrient under investigation, and adjustment for energy calculated from the same questionnaire used to estimate nutrient intakes improves the correlation of some nutrients with their biomarkers appreciably. For the nutrients examined, adjustment using weight and physical activity had at most a small effect on these correlations.


1976 ◽  
Vol 36 (3) ◽  
pp. 479-486 ◽  
Author(s):  
C. B. Cowey ◽  
J. M. Owen ◽  
J. W. Adron ◽  
C. Middleton

1. Five groups of juvenile turbot (Scophthalmus maximus) which had been given a diet free of fat for 12 weeks were given diets in which the lipid component (g/kg) was: oleic acid alone 50, oleic acid 40+linoleic acid 10, oleic acid 40+linolenic acid 10, oleic acid 40+arachidonic acid 10 or oleic acid 40+cod-liver oil 10. These five experimental diets were given for 16 weeks.2. Weight gains were highest in the group given the diet containing cod-liver oil and lowest in the groups given diets containing oleic acid alone or oleic acid+linoleic acid. Weight gains in the groups given oleic acid+arachidonic acid or linolenic acid were markedly inferior to those of the group given oleic acid+cod-liver oil. It is concluded that arachidonic acid is inferior to polyunsaturated fatty acids of the ω3 series in maintaining growth rate in turbot.3. Fatty acid analyses of neutral lipids and phospholipids of liver and extrahepatic tissues did not suggest any evidence of desaturation of dietary oleic acid, linoleic acid or linolenic acid by the turbot. These experiments confirm previous isotopic evidence that turbot lack the necessary microsomal desaturases to perform this metabolic transformation.


2007 ◽  
Vol 86 (4) ◽  
pp. 1232-1237 ◽  
Author(s):  
Sonsoles Morcillo ◽  
Gemma Rojo-Martínez ◽  
Fernando Cardona ◽  
María de la Cruz Almaraz ◽  
María de la Soledad Ruiz de Adana ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lihong Ma ◽  
Xinqi Cheng ◽  
Chuan Wang ◽  
Xinyu Zhang ◽  
Fei Xue ◽  
...  

Abstract Background Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. Results In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5–15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10–60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25–50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. Conclusions These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.


Author(s):  
Katja Lehnert ◽  
Mamun M. Rashid ◽  
Benoy Kumar Barman ◽  
Walter Vetter

AbstractNile tilapia (Oreochromis niloticus) was grown in Bangladesh with four different feeding treatments as part of a project that aims to produce fish in a cost-effective way for low-income consumers in developing countries. Fillet and head tissue was analysed because both tissues were destined for human consumption. Gas chromatography with mass spectrometry (GC/MS) analyses of transesterified fatty acid methyl ester extracts indicated the presence of ~ 50 fatty acids. Major fatty acids in fillet and head tissue were palmitic acid and oleic acid. Both linoleic acid and polyunsaturated fatty acids with three or more double bonds were presented in quantities > 10% of total fatty acids in fillet, but lower in head tissue. Erucic acid levels were below the newly proposed tolerable daily intake in the European Union, based on the consumption of 200 g fillet per day. Moreover, further analysis produced evidence for the presence of the dicarboxylic fatty acid azelaic acid (nonanedioic acid, Di9:0) in head tissue. To verify this uncommon finding, countercurrent chromatography was used to isolate Di9:0 and other dicarboxylic acids from a technical standard followed by its quantification. Di9:0 contributed to 0.4–1.3% of the fatty acid profile in head tissue, but was not detected in fillet. Fish fed with increasing quantities of flaxseed indicated that linoleic acid was the likely precursor of Di9:0 in the head tissue samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ban-Hock Khor ◽  
◽  
Sharmela Sahathevan ◽  
Ayesha Sualeheen ◽  
Mohammad Syafiq Md Ali ◽  
...  

AbstractThe metabolic impact of circulating fatty acids (FAs) in patients requiring hemodialysis (HD) is unknown. We investigated the associations between plasma triglyceride (TG) FAs and markers of inflammation, insulin resistance, nutritional status and body composition. Plasma TG-FAs were measured using gas chromatography in 341 patients on HD (age = 55.2 ± 14.0 years and 54.3% males). Cross-sectional associations of TG-FAs with 13 markers were examined using multivariate linear regression adjusted for potential confounders. Higher levels of TG saturated fatty acids were associated with greater body mass index (BMI, r = 0.230), waist circumference (r = 0.203), triceps skinfold (r = 0.197), fat tissue index (r = 0.150), serum insulin (r = 0.280), and homeostatic model assessment of insulin resistance (r = 0.276), but lower malnutrition inflammation score (MIS, r =  − 0.160). Greater TG monounsaturated fatty acid levels were associated with lower lean tissue index (r =  − 0.197) and serum albumin (r =  − 0.188), but higher MIS (r = 0.176). Higher levels of TG n-3 polyunsaturated fatty acids (PUFAs) were associated with lower MIS (r =  − 0.168) and interleukin-6 concentrations (r =  − 0.115). Higher levels of TG n-6 PUFAs were associated with lower BMI (r =  − 0.149) but greater serum albumin (r = 0.112). In conclusion, TG monounsaturated fatty acids were associated with poor nutritional status, while TG n-3 PUFAs were associated with good nutritional status. On the other hand, TG saturated fatty acids and TG n-6 PUFAs had both favorable and unfavorable associations with nutritional parameters.


Sign in / Sign up

Export Citation Format

Share Document