Applications of Multi-Variate Statistical Analysis of Spectrum Images to Microelectronic Devices

2001 ◽  
Vol 7 (S2) ◽  
pp. 1158-1159
Author(s):  
J. Bruley

It is not uncommon for an electrical failure in a microelectronic device to be traced back to an individual resistive contact, such as a W contact lined by TiN to the underlying metal silicide [1]. Identifying the root cause of the defective cell then requires the capability of extracting interfacial chemistry and microstructure with near atomic resolution, which is achieved by recording EELS and EDX data either along 1-d lines or from 2-d arrays. EELS data are characterized by intrinsically low signal-to-background ratios and plural inelastic-scattering effects, which presents a challenge to the reliability of the methods used to extract quantitative information from a spectrum image. Commercially available software packages by Emispec and Gatan currently provide routines for power-law or polynomial background fits and allow the net counts under peaks or edges to be determined from each pixel. in both cases each spectrum in the series is processed in the same manner.

Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Z. G. Song ◽  
S. P. Neo ◽  
S. K. Loh ◽  
C. K. Oh

Abstract New process will introduce new failure mechanisms during microelectronic device manufacturing. Even if the same defect, its root causes can be different for different processes. For aluminum(Al)-tungsten(W) metallization, the root cause of metal bridging is quite simple and mostly it is blocked etch or under-etch. But, for copper damascene process, the root causes of metal bridging are complicated. This paper has discussed the various root causes of metal bridging for copper damascene process, such as those related to litho-etch issue, copper CMP issue, copper corrosion issue and so on.


2011 ◽  
Vol 58-60 ◽  
pp. 2171-2176 ◽  
Author(s):  
Yuan Chen ◽  
Xiao Wen Zhang

Focused ion beam (FIB) system is a powerful microfabrication tool which uses electronic lenses to focus the ion beam even up to nanometer level. The FIB technology has become one of the most necessary failure analysis and failure mechanism study tools for microelectronic device in the past several years. Bonding failure is one of the most common failure mechanisms for microelectronic devices. But because of the invisibility of the bonding interface, it is difficult to analyze this kind of failure. The paper introduced the basic principles of FIB technology. And two cases for microelectronic devices bonding failure were analyzed successfully by FIB technology in this paper.


2001 ◽  
Vol 7 (S2) ◽  
pp. 310-311
Author(s):  
Thomas Gemming

High resolution transmission electron microscopy (HREM) is an excellent experimental method to image grain boundary structures with atomic resolution. The advantage of the method is the short exposure time of only about one second that is needed to record an image. Other methods like Z-contrast imaging require much longer exposure times and are therefore much more prone to specimen drift during recording. However there is the remaining difficulty to HREM that the evaluation of experimental images is not straightforward and a thorough analysis of the images is necessary in order to deduce quantitative information with small error bars of only a few pm (10-15m). A second inherent difficulty common to all atomic resolution imaging techniques is that the information is retrieved from a very small area of a specimen. The question arising from that is: can we nevertheless be sure to obtain a representative answer to a “real world” material science problem? A positive answer to this question is given by the investigations presented here.


Author(s):  
Tushara Pasupuleti ◽  
Satish G. Kandlikar

An approach towards practical application of microchannel cooling system is necessary as the demand of high power density devices is increasing. Colgan et. al. [1] have designed a unit known as Single Chip Module (SCM) by considering the practical issues for packaging a microchannel cooling system with a microelectronic device. The performance of the SCM has already been investigated by using water as working fluid by Colgan et. al. [1]. Considering the actual working conditions, water cannot be used in electronic devices as the working fluid because any leakage may lead to system damage. Alternative fluids like refrigerants were considered. In this research, the performance of SCM has been studied by using refrigerant R-123 as working fluid and compared with water cooled system. Cooling of 83.33 W/cm2 has been achieved for a powered area of 3 cm2 by maintaining chip temperature of 60°C. The heat transfer co-efficient obtained at a flowrate of 0.7 lpm was 34.87 kW/m2-K. The results obtained indicate that from a thermal viewpoint, R-123 can be considered as working fluid for microelectronic cooling devices.


2000 ◽  
Vol 6 (S2) ◽  
pp. 1050-1051
Author(s):  
J. Bruley ◽  
P. Flaitz

Many crucial measurements in the semiconductor industry involve determining the root cause of an electrical failure, often requiring the capability of extracting microstructural and chemical information with nanometer resolution [1]. The microanalysis is achieved by stepping the focused probe over the region of interest in STEM mode and recording an EDX and EELS spectrum at each pixel. Even for relatively modest image sizes, the resultant spectrum-image may consist of more than 10,000 spectra. With such large data sets, the prospect of manually inspecting and quantifying each spectrum in real-time is impossible and even automatic background modeling followed by peak area integration over selected spectral regions-of-interest can be excessively time consuming. Other methods to extract useful physical information include “fingerprinting” characteristic ELNES shapes to known compounds or bonding environments, multiple least squares regression to a relatively small set of suspected components or peak-fitting to model systematic changes in electronic density of states.


1996 ◽  
Vol 453 ◽  
Author(s):  
Hui Gu

AbstractInternal interfaces, between the same phase (grain boundary) or two different phases, often play an essential role in controlling various properties in ceramic materials. Analysis of such interfaces can achieve various newly available quantitative information on a sub-nanometer scale, as well as bonding picture associated with these interfaces. This analysis combines EELS spectrum profiling and advanced near-edge structure (ELNES) data processing, taking advantage from both the high spatial and energy resolutions provided by a dedicated STEM instrument. Demonstrated by chemical and structural study of gram boundary and inter-phase interfaces in Si3N4 ceramics where ∼1 ran thick amorphous phases cover every crystalline boundaries, it reveals that the amorphous boundary films are substantially different to bulk amorphous phase and to the interface between crystalline and amorphous phases. Moreover, the boundaries between two different crystalline phases were found covered with two thin amorphous layers of different composition and bonding. These observations can shed further light on the influence of interfaces on the macroscopic properties of these ceramic materials. This interfacial analuysis method can be extended to broader research area in solid state physics and chemistry.


Author(s):  
Anuradha Swaminathan ◽  
Joy Liao ◽  
Howard Marks

Abstract Although there are many advanced technologies and techniques for silicon diagnostics, effective failure analysis to root cause is getting increasingly challenging, as very often the electrical failure analysis data would point to a symptom that is the result of the defect rather than the actual location of the defect. Therefore, a combination of multiple techniques is often employed so that sensitivity of "the cause of the problem" can be observed. This work compiles a successful analysis with the aid of continuous wave laser voltage probing and soft defect localization techniques and presents three cases that are voltage-sensitive fails. The first case is a 28 nm device which failed at-speed scan. The second case is a 28 nm device failing RAM register BIST with high Vmin and the third case is a scan shift failure in a less than 28nm device.


Author(s):  
Z.G. Song ◽  
G.B. Ang ◽  
H.Y. Li ◽  
V. Sane ◽  
J. Indahwan ◽  
...  

Abstract Fault isolation is a critical step of failure analysis, which is most important for yield improvement for any new microelectronic device manufacturing. Conventionally, electrical faults are isolated by emission microscopy, liquid crystal, LIVA/TIVA and ORBIRCH etc. techniques after final test. As microelectronic devices are becoming more complicated and with multiple metal layers, failure analysis faces more challenges than before. These challenges are even tougher in wafer foundries because little device information is available. This makes yield ramp-up take longer time. Utilizing inline E-beam inspection equipment, the electrical faults can be captured at the source layer rather than after final test. E-beam inspection can be incorporated in the manufacturing line at any critical layer of front end and back-end. This paper describes the in-line E-beam inspection and presents three cases: (1) Gate-oxide issue, (2) Contact issue, and (3) Interconnect issue to demonstrate its application.


Author(s):  
A. Marathe ◽  
D. G. Walker

Miniaturization of microelectronic devices has lead to many new issues not seen in larger structures, such as hot carrier effects and interfacial effects. In power MOSFETs, degradation of the transconductance can occur over the lifetime of a device. This decrease in performance is a result of hot carriers in the channel region scattering at a Si/SiO2 interface that has been passivated with hydrogen. Eventually hot carriers liberate the hydrogen, leaving silicon bonds with an entirely different scattering cross section. The current work presents a Monte Carlo simulation of carrier transport in silicon near an interface. Scattering parameters at the interface are parameterized and studied. It was found that electron mobility, which is proportional to transconductance, is a function of the energy loss rate and type of scattering at the interface. Results indicate that dangling bonds and H-Si bonds can be characterized by different scattering mechanisms.


Sign in / Sign up

Export Citation Format

Share Document