Annual depletion and repletion of carcass fat depots in Scottish Blackface ewes

2001 ◽  
Vol 2001 ◽  
pp. 52-52
Author(s):  
T. Kvame ◽  
M.J. Young ◽  
K. Kolstad ◽  
N.R. Lambe ◽  
J. Conington ◽  
...  

To what extent different fat depots of the carcass are more or less useful to the animal as readily labile energy stores is not clear. A knowledge of how ewes partition and use fat within the carcass is vital in order to estimate the impact of selection to reduce subcutaneous fat on other carcass fat depots. This study was designed to describe changes in the different carcass fat depots over one annual production cycle.

2003 ◽  
Vol 76 (2) ◽  
pp. 211-219 ◽  
Author(s):  
N.R. Lambe ◽  
M.J. Young ◽  
S. Brotherstone ◽  
T. Kvame ◽  
J. Conington ◽  
...  

AbstractTissue depletion and repletion were investigated in 142 Scottish Blackface ewes using computed tomography (CT). Ewes of two ages (2 or 3 years) and differing reproductive status (barren, single- or twin-bearing) were studied through one annual production cycle to investigate mobilization of carcass fat (subcutaneous and inter-muscular), internal fat and muscle.Ewes were CT scanned five times during the 1-year study period: pre-mating; pre-lambing; mid-lactation; weaning; pre-mating the following year. For each animal at each of the five scanning events cross-sectional CT scans were taken at five anatomical sites (ischium, hip, 5th lumbar vertebra, 2nd lumbar vertebra and 8th thoracic vertebra). CT images were analysed to yield areas of carcass fat, muscle and internal fat and total weights of these tissues were estimated at each scanning event using prediction equations derived from a separate calibration data set.The results show that both carcass and internal fat depots were depleted during pregnancy and early lactation and repleted from mid-lactation to mating the following year. In proportionate terms, internal fat was most labile, but carcass fat contributed more to total weight change because it was a bigger fat depot. Subcutaneous fat was the largest and most labile of the carcass fat depots. Muscle reserves were depleted only when fat reserves had fallen to very low levels. Older ewes carried more carcass fat in total than younger ewes when reserves were low. Mobilization of tissue reserves in twin-bearing ewes was less than in single-bearing ewes, probably due to preferential feeding.


2013 ◽  
Vol 110 (10) ◽  
pp. 651-660 ◽  
Author(s):  
Mariangela Morelli ◽  
Melania Gaggini ◽  
Giuseppe Daniele ◽  
Paolo Marraccini ◽  
Rosa Sicari ◽  
...  

SummaryObesity is a major risk factor for cardiovascular disease and its complications. However, not all fat depots share the same characteristics. Recent studies have found that ectopic rather than subcutaneous fat accumulation is associated with increased cardiometabolic risk. However, ectopic fat accumulation can be seen initially as a protective mechanism against lipotoxicity. Subsequently the adipose tissue becomes dysfunctional, thus inducing systemic metabolic alterations (through release of cytokines) or specific organ dysfunctions. The purpose of this review is to summarise the current available data on the impact of excess adiposity vs ectopic fat in the development of cardiometabolic diseases.


1980 ◽  
Vol 60 (2) ◽  
pp. 223-230 ◽  
Author(s):  
S. D. M. JONES ◽  
R. J. RICHMOND ◽  
M. A. PRICE ◽  
R. B. BERG

The growth and distribution of fat from 163 pig carcasses were compared among five breeds (Duroc × Yorkshire (D × Y), Hampshire × Yorkshire (H × Y), Yorkshire (Y × Y), Yorkshire × Lacombe-Yorkshire (Y × L-Y) and Lacombe × Yorkshire (L × Y)) and two sex-types (barrows and gilts) over a wide range in carcass weight. The growth pattern of fat and the fat depots were estimated from the allometric equation (Y = aXb) using side muscle weight and side fat weight separately as independent variables. Growth coefficients (b) for intermuscular and subcutaneous fat depots were similar for the hindquarter but the intermuscular depot coefficient was slightly higher for the forequarter. The coefficient for body cavity fat was highest in all comparisons. No significant differences were detected for coefficients among breeds and between sexes using both total muscle and total side fat as independent variables. Significant breed and sex-type differences were found in the fat depots at a constant weight of side muscle. This would indicate that breed differences in fatness seemed to be more influenced by the initiation of fattening at different muscle weights than by any inherent differences in rate of fattening. Significant breed differences were also found in the fat depots at a constant fat weight, indicating that breed may influence fat distribution. Sex-type had no effect on fat distribution when the evaluation was made at constant fatness.


2013 ◽  
Vol 304 (3) ◽  
pp. E282-E293 ◽  
Author(s):  
Charles Harris ◽  
Donald J. Roohk ◽  
Mark Fitch ◽  
Benjamin M. Boudignon ◽  
Bernard P. Halloran ◽  
...  

Glucocorticoids are extremely effective anti-inflammatory therapies, but their clinical use is limited due to severe side effects, including osteoporosis, muscle wasting, fat redistribution, and skin thinning. Here we use heavy water labeling and mass spectrometry to measure fluxes through metabolic pathways impacted by glucocorticoids. We combine these methods with measurements of body composition in corticotropin-releasing hormone (CRH)-transgenic (Tg)+ mice that have chronically elevated, endogenously produced corticosterone and a phenotype that closely mimics Cushing's disease in humans. CRH-Tg+ mice had increased adipose mass, adipose triglyceride synthesis, and greatly increased triglyceride/fatty acid cycling in subcutaneous and abdominal fat depots and increased de novo lipogenesis in the abdominal depot. In bone, CRH-Tg+ mice had decreased bone mass, absolute collagen synthesis rates, and collagen breakdown rate. In skin, CRH-Tg+ mice had decreased skin thickness and absolute collagen synthesis rates but no decrease in the collagen breakdown rate. In muscle, CRH-Tg+ mice had decreased muscle mass and absolute protein synthesis but no decrease in the protein breakdown rate. We conclude that chronic exposure to endogenous glucocorticoid excess in mice is associated with ongoing decreases in bone collagen, skin collagen, and muscle protein synthesis without compensatory reduction (coupling) of breakdown rates in skin and muscle. Both of these actions contribute to reduced protein pool sizes. We also conclude that increased cycling between triglycerides and free fatty acids occurs in both abdominal and subcutaneous fat depots in CRH-Tg+ mice. CRH-Tg mice have both increased lipolysis and increased triglyceride synthesis in adipose tissue.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1407
Author(s):  
Courtney A. Weber

Annual plasticulture production of strawberries promises superior weed control, fruit quality and yields. However, strawberry varieties adapted for perennial, matted-row production and local markets in cold climate regions have not been widely tested for adaptation to an annual production cycle. Productivity of seven short-day varieties developed for matted-row and/or annual production was examined in an annual plasticulture system in two consecutive trials in central NY (lat. 42.87° N, long. 76.99° W) harvested in 2013 and 2014. ‘Flavorfest’ demonstrated good performance in Trial 1 with high yield (390 g/plant) and large fruit size (13.9 g mean berry weight). ‘Jewel’ was shown to be well adapted to the annual plasticulture system with consistently high yields (330 and 390 g/plant) that equaled or surpassed other varieties and had moderate fruit size. ‘Chandler’ performed similarly to previous trials conducted in warmer regions with yield (340 g/plant) and fruit size (9.8 g mean berry weight) similar to ‘Jewel’. ‘Clancy’ yielded less but was consistent from year to year. The late season varieties Seneca and Ovation showed marked variability between years, possibly due to drastically different temperatures during flowering and fruit development in Trial 1 compared to Trial 2. High temperatures in Trial 1 likely caused higher early fruit yield, a compressed season and a precipitous decline in fruit size in the later season, thus reducing yield in the late season. Survival after a second dormant period was poor resulting in a small second harvest and reduced fruit size. Overall, the system demonstrated many of the expected benefits but may be more sensitive to weather conditions in the region. While many varieties developed for matted-row production may work well in an annual plasticulture system, not all varieties are equally adapted. Performance of each variety should be determined independently before large scale adoption by growers.


2018 ◽  
Vol 51 (3) ◽  
pp. 1051-1068 ◽  
Author(s):  
Jèssica Latorre ◽  
José M. Moreno-Navarrete ◽  
Mónica Sabater ◽  
Maria Buxo ◽  
José I. Rodriguez-Hermosa ◽  
...  

Background/Aims: Obesity is characterized by the immune activation that eventually dampens insulin sensitivity and changes metabolism. This study explores the impact of different inflammatory/ anti-inflammatory paradigms on the expression of toll-like receptors (TLR) found in adipocyte cultures, adipose tissue, and blood. Methods: We evaluated by real time PCR the impact of acute surgery stress in vivo (adipose tissue) and macrophages (MCM) in vitro (adipocytes). Weight loss was chosen as an anti-inflammatory model, so TLR were analyzed in fat samples collected before and after bariatric surgery-induced weight loss. Associations with inflammatory and metabolic parameters were analyzed in non-obese and obese subjects, in parallel with gene expression measures taken in blood and isolated adipocytes/ stromal-vascular cells (SVC). Treatments with an agonist of TLR3 were conducted in human adipocyte cultures under normal conditions and upon conditions that simulated the chronic low-grade inflammatory state of obesity. Results: Surgery stress raised TLR1 and TLR8 in subcutaneous (SAT), and TLR2 in SAT and visceral (VAT) adipose tissue, while decreasing VAT TLR3 and TLR4. MCM led to increased TLR2 and diminished TLR3, TLR4, and TLR5 expressions in human adipocytes. The anti-inflammatory impact of weight loss was concomitant with decreased TLR1, TLR3, and TLR8 in SAT. Cross-sectional associations confirmed increased V/ SAT TLR1 and TLR8, and decreased TLR3 in obese patients, as compared with non-obese subjects. As expected, TLR were predominant in SVC and adipocyte precursor cells, even though expression of all of them but TLR8 (very low levels) was also found in ex vivo isolated and in vitro differentiated adipocytes. Among SVC, CD14+ macrophages showed increased TLR1, TLR2, and TLR7, but decreased TLR3 mRNA. The opposite patterns shown for TLR2 and TLR3 in V/ SAT, SVC, and inflamed adipocytes were observed in blood as well, being TLR3 more likely linked to lymphocyte instead of neutrophil counts. On the other hand, decreased TLR3 in adipocytes challenged with MCM dampened lipogenesis and the inflammatory response to Poly(I:C). Conclusion: Functional variations in the expression of TLR found in blood and hypertrophied fat depots, namely decreased TLR3 in lymphocytes and inflamed adipocytes, are linked to metabolic inflammation.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Magali Kouidhi ◽  
Phi Villageois ◽  
Carine M. Mounier ◽  
Corinne Ménigot ◽  
Yves Rival ◽  
...  

Animal study findings have revealed that individual fat depots are not functionally equivalent and have different embryonic origins depending on the anatomic location. Mouse bone regeneration studies have also shown that it is essential to match theHoxcode of transplanted cells and host tissues to achieve correct repair. However, subcutaneous fat depots from any donor site are often used in autologous fat grafting. Our study was thus carried out to determine the embryonic origins of human facial (chin) and limb (knee) fat depots and whether they had similar features and molecular matching patterns. Paired chin and knee fat depots were harvested from 11 subjects and gene expression profiles were determined by DNA microarray analyses. Adipose-derived stromal cells (ASCs) from both sites were isolated and analyzed for their capacity to proliferate, form clones, and differentiate. Chin and knee fat depots expressed a differentHOXcode and could have different embryonic origins. ASCs displayed a different phenotype, with chin-ASCs having the potential to differentiate into brown-like adipocytes, whereas knee-ASCs differentiated into white adipocytes. These results highlighted different features for these two fat sites and indicated that donor site selection might be an important factor to be considered when applying adipose tissue in cell-based therapies.


2020 ◽  
Vol 22 (12) ◽  
pp. 23-30
Author(s):  
Ekaterina A. Zheleznova ◽  
◽  
Juliya V. Zhernakova ◽  
Merab A. Shariia ◽  
Nataliia V. Blinova ◽  
...  

Fibroblast Growth Factor 21 (FGF21) is a hormone-like protein involved in the regulation of energy balance and glucose and lipid homeostasis. The study of the association of this factor with the metabolic phenotype – metabolically healthy (MHAO) and metabolically unhealthy abdominal obesity (AO) and different fat depots (visceral, subcutaneous, epicardial, perivascular) in young people is of undoubted scientific and practical interest. Aim. To determine serum FGF21 levels and match it with the distribution of adipose tissue in young people with AO. Outcomes and methods. The study enrolled 132 people (mean age 37.59±6.35 years). 3 groups were formed: 0th – 16 conditionally healthy volunteers; 1st –46 people of 40 years [34; 43] with MHAO; 2nd – 70 people of 40 years [35; 44] with metabolic syndrome (MS). All subjects underwent measurement of height, body weight, waist circumference, calculation of body mass index. The FGF21 levels (ELISA KIT, BCM Diagnostics, Germany), lipid profile, 2-hour glucose tolerance test, glucose, insulin, leptin, adiponectin levels and HOMA-IR were assessed. Daily monitoring of blood pressure was performed. The volumes of subcutaneous, visceral, perivascular, epicardial fat, as well as subcutaneous fat to visceral fat ratio were determined with computed tomography. Additionally, for subanalysis, all patients (132 people, mean age 37.59±6.35 years) were divided into 6 groups depending on the presence of AO and the number of risk factors (RF): AO-0/FR-0 (n=16); AO-1/FR-0 (n=3); AO-1/FR-1 (n=40); AO-1/FR-2 (n=37); AO-1/FR-3 (n=14); AO-1/FR-4 (n=5). In each group, FGF21 levels was assessed. Results. The FGF21 levels was significantly higher in the groups of persons with MHAO (294.4 pg/ml) and MS (245.7 pg/ml) compared with the control group (110.2 pg/ml); p=0.04 and p=0.05, respectively. According to the correlation analysis data, there was significant weak association of FGF21 with age (r=0.22, p≤0.05), waist circumference (r=0.18, p≤0.05), hip circumference (r=0.26, p≤0.05), body mass index (r=0.3, p≤0.01). FGF21 was found to be associated with vis-ceral (r=0.2, p≤0.05) and subcutaneous (r=0.2, p≤0.05) fat depots. A significant association of FGF21 with triglycerides (r=0.21, p≤0.05) and leptin (r=0.24, p≤0.05) was registered. The FGF21 level ≥345.8 pg/ml reflected a 3-fold increase in the risk of MS in young people (AuROC 0.74, sensitivity 78.6%, specificity 75.0%, p<0.0001). The FGF21 levels ≥294.4 pg/ml was a risk marker for MHAO (AuROC 0,70, sensitivity 67.4%, specificity 75.0%, p<0.0001). According to the results of subanalysis, a significant (p<0.01) increase in the FGF21 concentration was revealed in the groups with an increase in the number of MS components. Conclusions. The FGF21 levels increases with the worsening of the metabolic phenotype; its increase is seen long before the formation of MS (in persons with MHAO). FGF21 in young people is associated with visceral and subcutaneous fat depots, triglyceride levels and leptin. FGF21≥345.8 pg/ml can be considered a predictor of MS in young people, but further research is required.


2019 ◽  
Vol 240 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Li Zhao ◽  
Chunfang Zhu ◽  
Meng Lu ◽  
Chi Chen ◽  
Xiaomin Nie ◽  
...  

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are an ideal therapy for type 2 diabetes and, as of recently, for obesity. In contrast to visceral fat, subcutaneous fat appears to be protective against metabolic diseases. Here, we aimed to explore whether liraglutide, a GLP-1RA, could redistribute body fat via regulating lipid metabolism in different fat depots. After being fed a high-fat diet for 8 weeks, 50 male Wistar and Goto-Kakizaki rats were randomly divided into a normal control group, a diabetic control group, low- and high-dose liraglutide-treated groups and a diet-control group. Different doses of liraglutide (400 μg/kg/day or 1200 μg/kg/day) or an equal volume of normal saline were administered to the rats subcutaneously once a day for 12 weeks. Body composition and body fat deposition were measured by dual-energy X-ray absorptiometry and MRI. Isotope tracers were infused to explore lipid metabolism in different fat depots. Quantitative real-time PCR and Western blot analyses were conducted to evaluate the expression of adipose-related genes. The results showed that liraglutide decreased visceral fat and relatively increased subcutaneous fat. Lipogenesis was reduced in visceral white adipose tissue (WAT) but was elevated in subcutaneous WAT. Lipolysis was also attenuated, and fatty acid oxidation was enhanced. The mRNA expression levels of adipose-related genes in different tissues displayed similar trends after liraglutide treatment. In addition, the expression of browning-related genes was upregulated in subcutaneous WAT. Taken together, the results suggested that liraglutide potentially redistributes body fat and promotes browning remodeling in subcutaneous WAT to improve metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document