scholarly journals microRNA-17 functions as an oncogene by downregulating Smad3 expression in hepatocellular carcinoma

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Zhufeng Lu ◽  
Xiuhua Li ◽  
Yongfeng Xu ◽  
Miaomiao Chen ◽  
Wei Chen ◽  
...  

Abstract The sekelsky mothers against dpp3 (Smad3) functions as a transcriptional modulator activated by transforming growth factor-β (TGF-β). Accumulated evidences indicated that Smad3 played the important roles in carcinogenesis and progression of hepatocellular carcinoma (HCC). Up to now, the regulatory mechanism of Smad3 in HCC still remains unclear. It has been known that some particular microRNAs (miRNAs) involve in carcinogenesis through the regulation of gene expressions with targeting mRNAs. In our study, the unknown candidates of miRNAs that target Smad3 mRNA were searched by using a newly established in vivo approach, the miRNA in vivo precipitation (miRIP). Using a loss-of-function assay, we demonstrated that miR-17 directly targeted Smad3 in HCC cells and inhibition on miR-17 increased Smad3 expression. Furthermore, we found that downregulation on Smad3 expression was consistent with high level of miR-17 in HCC tissues of patients when compared with around normal liver tissues. The manipulated miR-17 silence in HCC cells suppressed their growth of both in vitro and in vivo. Such suppression on cell growth could be recovered through downregulating Smad3. In addition, miR-17 affected cell proliferation through arresting cell cycle in G1 phase. The negative correlation between levels of miR-17 and protein levels of Smad3 was supported by the results of analysis with HCC tissue chip. In summary, for the first time, we confirmed that miR-17 directly targeted Smad3 mRNA and downregulated Smad3 protein expression in HCC. Our results indicated that the increased expression of miR-17 promoted carcinogenesis of HCC through down-regulations of Smad3, suggesting miR-17 might serve as the potential diagnostic and therapeutic targets for clinical HCC.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


Gut ◽  
2019 ◽  
Vol 69 (4) ◽  
pp. 727-736 ◽  
Author(s):  
Cun Wang ◽  
Hui Wang ◽  
Cor Lieftink ◽  
Aimee du Chatinier ◽  
Dongmei Gao ◽  
...  

ObjectivesHepatocellular carcinoma (HCC) is one of the most frequent malignancies and a major leading cause of cancer-related deaths worldwide. Several therapeutic options like sorafenib and regorafenib provide only modest survival benefit to patients with HCC. This study aims to identify novel druggable candidate genes for patients with HCC.DesignA non-biased CRISPR (clustered regularly interspaced short palindromic repeats) loss-of-function genetic screen targeting all known human kinases was performed to identify vulnerabilities of HCC cells. Whole-transcriptome sequencing (RNA-Seq) and bioinformatics analyses were performed to explore the mechanisms of the action of a cyclin-dependent kinase 12 (CDK12) inhibitor in HCC cells. Multiple in vitro and in vivo assays were used to study the synergistic effects of the combination of CDK12 inhibition and sorafenib.ResultsWe identify CDK12 as critically required for most HCC cell lines. Suppression of CDK12 using short hairpin RNAs (shRNAs) or its inhibition by the covalent small molecule inhibitor THZ531 leads to robust proliferation inhibition. THZ531 preferentially suppresses the expression of DNA repair-related genes and induces strong DNA damage response in HCC cell lines. The combination of THZ531 and sorafenib shows striking synergy by inducing apoptosis or senescence in HCC cells. The synergy between THZ531 and sorafenib may derive from the notion that THZ531 impairs the adaptive responses of HCC cells induced by sorafenib treatment.ConclusionOur data highlight the potential of CDK12 as a drug target for patients with HCC. The striking synergy of THZ531 and sorafenib suggests a potential combination therapy for this difficult to treat cancer.


Gut ◽  
2019 ◽  
Vol 69 (7) ◽  
pp. 1309-1321 ◽  
Author(s):  
Wen-Ping Xu ◽  
Jin-Pei Liu ◽  
Ji-Feng Feng ◽  
Chang-Peng Zhu ◽  
Yuan Yang ◽  
...  

ObjectiveAutophagy participates in the progression of hepatocellular carcinoma (HCC) and the resistance of HCC cells to sorafenib. We investigated the feasibility of sensitising HCC cells to sorafenib by modulating miR-541-initiated microRNA-autophagy axis.DesignGain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the malignant properties and autophagy of human HCC cells. Autophagy was quantified by western blotting of LC3, transmission electron microscopy analyses and confocal microscopy scanning of mRFP-GFP-LC3 reporter construct. Luciferase reporter assays were conducted to confirm the targets of miR-541. HCC xenograft tumours were established to analyse the role of miR-541 in sorafenib-induced lethality.ResultsThe expression of miR-541 was downregulated in human HCC tissues and was associated with malignant clinicopathologic phenotypes, recurrence and survival of patients with HCC. miR-541 inhibited the growth, metastasis and autophagy of HCC cells both in vitro and in vivo. Prediction software and luciferase reporter assays identified autophagy-related gene 2A (ATG2A) and Ras-related protein Rab-1B (RAB1B) as the direct targets of miR-541. Consistent with the effects of the miR-541 mimic, inhibition of ATG2A or RAB1B suppressed the malignant phenotypes and autophagy of HCC cells. Furthermore, siATG2A and siRAB1B partially reversed the enhancement of the malignant properties and autophagy in HCC cells mediated by the miR-541 inhibitor. More interestingly, higher miR-541 expression predicted a better response to sorafenib treatment, and the combination of miR-541 and sorafenib further suppressed the growth of HCC cells in vivo compared with the single treatment.ConclusionsDysregulation of miR-541-ATG2A/RAB1B axis plays a critical role in patients’ responses to sorafenib treatment. Manipulation of this axis might benefit survival of patients with HCC, especially in the context of the highly pursued strategies to eliminate drug resistance.


2021 ◽  
Vol 12 ◽  
pp. 204062232098734
Author(s):  
Shengming Qu ◽  
Zhe Liu ◽  
Bing Wang

Aims: In this study, we aimed to decipher the impact of enhancer of zeste homolog 2 (EZH2) in psoriasis as well as the underlying mechanism. Methods: A mouse model of psoriasis was developed by means of imiquimod induction, with the expression of EZH2, microRNA-125a-5p (miR-125a-5p), and SFMBT1 determined. The role of EZH2, miR-125a-5p, and SFMBT1 in malignant phenotypes of HaCaT cells and the development of psoriasis in vivo was subsequently investigated through gain- and loss-of-function experiments. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were conducted to explore the relationship between EZH2 or SFMBT1 and miR-125a-5p. Finally, the effects of EZH2 and miR-125a-5p on the transforming growth factor β (TGFβ)/SMAD pathway were analyzed. Results: Overexpressed SFMBT1 and EZH2 was detected while miR-125a-5p were downregulated in psoriasis tissues and human keratinocyte (HaCaT) cells. EZH2 increased the levels of IL-17A-induced cytokines and promoted the malignant phenotypes of HaCaT cells. Functionally, EZH2 reduced miR-125a-5p expression while miR-125a-5p targeted SFMBT1 to activate the TGFβ/SMAD pathway in vitro. Knockdown of EZH2 or up-regulation of miR-125a-5p inhibited cell proliferation and the levels of IL-17A-induced cytokines, but increased the expression of TGFβ1 and the extent of smad2 and smad3 phosphorylation in HaCaT cells. Notably, EZH2 contributed to the development of psoriasis in vivo by inhibiting the TGFβ/SMAD pathway via impairment of miR-125a-5p-mediated SFMBT1 inhibition. Conclusion: Taken together, the results of the current study highlight the ability of EZH2 to potentially inactivate the TGFβ/SMAD pathway via upregulation of miR-125a-5p-dependent SFMBT1during the progression of psoriatic lesions.


2021 ◽  
Author(s):  
Peiyi Xie ◽  
Yanglin Chen ◽  
Hongfei Zhang ◽  
Guichao Zhou ◽  
Qing Chao ◽  
...  

Abstract Background: OTUD3, a deubiquitinating enzyme, has emerged as important role in some cancer. It showed that OTUD3 plays suppressive role in breast cancer whereas oncogenic role in lung cancer. However, the function and mechanism of OTUD3 in hepatocellular carcinoma (HCC) progression remain elusive. Methods: Gene and protein expression of OTUD3 in HCC tissues were determined by qRT-PCR, western blot and immunohistochemistry. A series of gain- and loss-of-function assays were used to investigated the role of OTUD3 in HCC cells progression. Moreover, mass spectroscopic analysis and RNA-seq were used to identify the downstream targets of OTUD3 in HCC cells. The interaction between OTUD3 and ACTN4 was examined through co-IP experiment and in vitro ubiquitination assay.Results: In our research, OTUD3 was significantly overexpressed in HCC tissues and higher OTUD3 expression was correlated with bigger tumor size, more distant metastasis, and worse TNM stage. Additionally, OTUD3 promoted HCC cells growth and metastasis in vitro and in vivo. Furthermore, ACTN4 was identified as a downstream target of OTUD3 and ACTN4 protein level was significantly related to OTUD3 expression. Rescue experiments indicated that ACTN4 was essential for OTUD3-mediated HCC proliferation and metastasis in vitro and in vivo. Moreover, we identified that NF-κB signaling pathway was activated by OTUD3 through ACTN4 to promote HCC cells progression. Importantly, OTUD3 protein level was correlated with ACTN4 protein level and activity of NF-κB signaling pathway in HCC tissues. Conclusion: Our findings identify the oncogenic role of OTUD3 in HCC and suggest that OTUD3 can be considered as a pivotal prognostic biomarker and a potential therapeutic target.


Author(s):  
Gang Chen ◽  
Yi Wang ◽  
Xin Zhao ◽  
Xiao-zai Xie ◽  
Jun-gang Zhao ◽  
...  

Abstract Background Liver cancer stem cells (LCSCs) play key roles in the metastasis, recurrence, and chemotherapeutic resistance of hepatocellular carcinoma (HCC). Our previous research showed that the POSTN gene is closely related to the malignant progression and poor prognosis of HCC. This study aimed to elucidate the role of POSTN in generating LCSCs and maintaining their stemness as well as the underlying mechanisms. Methods Human HCC tissues and matched adjacent normal tissues were obtained from 110 patients. Immunohistochemistry, western blotting (WB), and RT-PCR were performed to detect the expression of POSTN and stemness factors. The roles of transforming growth factor (TGF)-β1 and AP-2α in the POSTN-induced stemness transformation of HCC cells were explored in vitro and in vivo using LCSCs obtained by CD133+ cell sorting. Results The high expression of POSTN was correlated with the expression of various stemness factors, particularly CD133, in our HCC patient cohort and in TCGA and ICGC datasets. Knockdown of POSTN expression decreased the abilities of HCC cell lines to form tumours in xenograft mouse models. Knockdown of POSTN expression also suppressed cell viability and clone formation, invasion, and sphere formation abilities in vitro. Knockdown of AP-2α attenuated the generation of CD133+ LCSCs and their malignant behaviours, indicating that AP-2α was a critical factor that mediated the POSTN-induced stemness transformation and maintenance of HCC cells. The role of AP-2α was verified by using a specific αvβ3 antagonist, cilengitide, in vitro and in vivo. Activation of POSTN could release TGFβ1 from the extracellular matrix and initiated POSTN/TGFβ1 positive feedback signalling. Furthermore, we found that the combined use of cilengitide and lenvatinib suppressed the growth of HCC cells with high POSTN expression more effectively than the use of lenvatinib alone in the patient-derived xenograft (PDX) mouse model. Conclusions The POSTN/TGFβ1 positive feedback pathway regulates the expression of stemness factors and the malignant progression of HCC cells by regulating the transcriptional activation of AP-2α. This pathway may serve as a new target for targeted gene therapy in HCC.


2021 ◽  
Author(s):  
Peiyi Xie ◽  
Qing Li ◽  
Qing Chao ◽  
Jiayu Fang ◽  
Jing Xie ◽  
...  

Abstract BackgroundDeubiquitinase (DUB) zinc finger RANBP2-type containing 1 (ZRANB1/TRABID) has been reported to have a close relationship with cancers. However, its underlying role and molecular mechanisms in hepatocellular carcinoma (HCC) remain elusive. MethodsGene and protein expression of ZRANB1 in HCC tissues were determined by qRT-PCR, western blot and immunohistochemistry. A series of gain- and loss-of-function assays were used to investigated the role of ZRANB1 in HCC cells progression. Moreover, RNA-seq were used to identify the downstream targets of ZRANB1 in HCC cells. The interaction between ZRANB1 and SP1 was examined through co-IP experiment and in vitro ubiquitination assay.ResultsZRANB1 was highly expressed in HCC tissues and ZRANB1 can regulate HCC cell growth and metastasis in vitro and in vivo. Through RNA-seq, we identified that Lysyl oxidase-like 2 (LOXL2) was the most significantly downregulated gene after ZRANB1 knockdown. Furthermore, the scatter plots indicated a significant positive correlation between ZRANB1 and LOXL2 expression in clinical HCC specimens. Additionally, LOXL2 was essential for ZRANB1-mediated HCC growth and metastasis. More importantly, specificity protein 1 (SP1) was critical in ZRANB1-mediated regulation of LOXL2 expression. Mechanistically, ZRANB1 bound with SP1 directly and stabilized the SP1 protein by deubiquitinating it. The expression patterns of ZRANB1, SP1 and LOXL2 were evaluated in HCC patients. ConclusionZRANB1 overexpression facilitates the carcinogenesis of HCC through stabilizing and upregulating SP1 to promote LOXL2 expression, suggesting ZRANB1 can be novel prognostic biomarker for HCC treatment.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiran Chen ◽  
Li Li ◽  
Jie Lan ◽  
Yang Cui ◽  
Xiaosong Rao ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is among the most common forms of cancer and is associated with poor patient outcomes. The emergence of therapeutic resistance has hampered the efficacy of targeted treatments employed to treat HCC patients to date. In this study, we conducted a series of CRISPR/Cas9 screens to identify genes associated with synthetic lethality capable of improving HCC patient clinical responses. Methods CRISPR-based loss-of-function genetic screens were used to target 18,053 protein-coding genes in HCC cells to identify chemotherapy-related synthetic lethal genes in these cells. Synergistic effects were analyzed through in vitro and in vivo analyses, while related mechanisms were explored through RNA-seq and metabolomics analyses. Potential inhibitors of identified genetic targets were selected through high-throughput virtual screening. Results The inhibition of phosphoseryl-tRNA kinase (PSTK) was found to increase HCC cell sensitivity to chemotherapeutic treatment. PSTK was associated with the suppression of chemotherapy-induced ferroptosis in HCC cells, and the depletion of PSTK resulted in the inactivation of glutathione peroxidative 4 (GPX4) and the disruption of glutathione (GSH) metabolism owing to the inhibition of selenocysteine and cysteine synthesis, thus enhancing the induction of ferroptosis upon targeted chemotherapeutic treatment. Punicalin, an agent used to treat hepatitis B virus (HBV), was identified as a possible PSTK inhibitor that exhibited synergistic efficacy when applied together with Sorafenib to treat HCC in vitro and in vivo. Conclusions These results highlight a key role for PSTK as a mediator of resistance to targeted therapeutic treatment in HCC cells that functions by suppressing ferroptotic induction. PSTK inhibitors may thus represent ideal candidates for overcoming drug resistance in HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenzhou Ding ◽  
Ye Fan ◽  
Wenbo Jia ◽  
Xiongxiong Pan ◽  
Guoyong Han ◽  
...  

ObjectivesFeline sarcoma-related protein (FER) is known to play a critical regulatory role in several carcinomas. However, the exact biological function of FER in hepatocellular carcinoma (HCC) still needs to be investigated. The primary objective of this research was to investigate the unknown function and molecular mechanisms of FER in HCC.Materials and MethodsThe expression level of FER in HCC tissue samples and cells was examined by RT-qPCR, immunohistochemistry and western blot. Cellular and animal experiments were used to explore the effect of FER on the proliferative and metastatic capacities of HCC cells. The crosstalk between FER and NF-κB signaling was explored by western blot. The upstream factors that regulate FER were evaluated through dual-luciferase experiments and western blot assays.ResultsFER was overexpressed in HCC specimens and HCC cell lines. FER expression levels were positively associated with unfavorable clinicopathological characteristics. The higher the expression of FER was, the worse the overall survival of HCC patients was. The results of loss-of-function and gain-of-function experiments indicated that knockdown of FER decreased, while overexpression of FER increased, the proliferation, invasion and metastasis of HCC cells in vitro and in vivo. Mechanistically, we found that FER activated the NF-κB signaling pathway and stimulated epithelial-to-mesenchymal transition (EMT). We also found that FER was directly regulated by miR-206, and the downregulation of miR-206 was associated with proliferation and metastatic progression in HCC.ConclusionsThe present research was the first to reveal that a decrease in miR-206 levels results in an increase in FER expression in HCC, leading to enhanced cell growth and metastatic abilities via activation of the NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document