scholarly journals Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Grigory Ryzhakov ◽  
Hannah Almuttaqi ◽  
Alastair L. Corbin ◽  
Dorothée L. Berthold ◽  
Tariq Khoyratty ◽  
...  

AbstractInterferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.

2020 ◽  
Author(s):  
Grigory Ryzhakov ◽  
Hannah Almuttaqi ◽  
Alastair L. Corbin ◽  
Tariq Khoyratty ◽  
Dorothee Berthold ◽  
...  

AbstractInflammatory bowel disease (IBD) is a group of inflammatory disorders of the gastro-intestinal tract caused by a complex combination of genetic and environmental factors. Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, which plays a key pathogenic role in mouse colitis models and is a genetic risk factor for IBD. A screen of a protein kinase inhibitor library in macrophages revealed a list of putative IRF5 kinases. Among the top hits validated in multiple in vitro assays, protein-tyrosine kinase 2-beta (PTK2B or PYK2) was identified as the only IBD genetic risk factor, known to impact gene expression in myeloid cells1,2. Phospho-proteomics and mutagenesis analyses established that PYK2 directly phosphorylates and activates IRF5 at tyrosine (Y) 171. IRF5 nuclear translocation and recruitment to target genes was impaired in PYK2-deficient cells or in cells treated with PYK2 inhibitors. Importantly, macrophage transcriptomic signature under PYK2 inhibition phenocopied IRF5 deficiency. Treatment with a PYK2 inhibitor reduced pathology and inflammatory cytokine production in Helicobacter hepaticus + anti-IL-10R antibody induced colitis model. It also decreased levels of pro-inflammatory cytokines in human colon biopsies taken from patients with ulcerative colitis. Thus, we have identified a major role for PYK2 in regulating the inflammatory response and mapped its activity to the IRF5 innate sensing pathway, opening opportunities for therapeutic interference with it in IBD and other inflammatory conditions.


2020 ◽  
Vol 79 (4) ◽  
pp. 468-478 ◽  
Author(s):  
Stefania Del Fabbro ◽  
Philip C. Calder ◽  
Caroline E. Childs

The aim of the present paper is to review the effects of non-digestible oligosaccharides (NDO) on immunity, focusing on their microbiota-independent mechanisms of action, as well as to explore their potential beneficial role in inflammatory bowel diseases (IBD). IBD are chronic, inflammatory conditions of the gastrointestinal tract. Individuals with IBD have an aberrant immune response to commensal microbiota, resulting in extensive mucosal inflammation and increased intestinal permeability. NDO are prebiotic fibres well known for their role in supporting intestinal health through modulation of the gut microbiota. NDO reach the colon intact and are fermented by commensal bacteria, resulting in the production of SCFA with immunomodulatory properties. In disease states characterised by increased gut permeability, prebiotics may also bypass the gut barrier and directly interact with intestinal and systemic immune cells, as demonstrated in patients with IBD and in infants with an immature gut. In vitro models show that fructooligosaccharides, inulin and galactooligosaccharides exert microbiota-independent effects on immunity by binding to toll-like receptors on monocytes, macrophages and intestinal epithelial cells and by modulating cytokine production and immune cell maturation. Moreover, animal models and human supplementation studies demonstrate that some prebiotics, including inulin and lactulose, might reduce intestinal inflammation and IBD symptoms. Although there are convincing preliminary data to support NDO as immunomodulators in the management of IBD, their mechanisms of action are still unclear and larger standardised studies need to be performed using a wider range of prebiotics.


2021 ◽  
Vol 22 (5) ◽  
pp. 2645
Author(s):  
Dinh Nam Tran ◽  
Seon Myeong Go ◽  
Seon-Mi Park ◽  
Eui-Man Jung ◽  
Eui-Bae Jeung

Inflammatory bowel diseases (IBDs) comprises a range of chronic inflammatory conditions of the intestinal tract. The incidence and prevalence of IBDs are increasing worldwide, but the precise etiology of these diseases is not completely understood. Calcium signaling plays a regulatory role in cellular proliferation. Nckx3, a potassium-dependent Na+/Ca2+ exchanger, is not only expressed in the brain but also in the aortic, uterine, and intestinal tissues, which contain abundant smooth muscle cells. This study investigated the role of Nckx3 in intestinal inflammation. Microarray analyses revealed the upregulation of the innate immune response-associated genes in the duodenum of Nckx3 knockout (KO) mice. The Nckx3 KO mice also showed an increase in IBD- and tumorigenesis-related genes. Using dextran sodium sulfate (DSS)-induced experimental colitis mice models, the Nckx3 KO mice showed severe colitis. Furthermore, the pathways involving p53 and NF-κB signaling were significantly upregulated by the absence of Nckx3. Overall, Nckx3 plays a critical role in the innate immune and immune response and may be central to the pathogenesis of IBD.


2020 ◽  
Vol 27 (1) ◽  
pp. 74-83 ◽  
Author(s):  
Ritika Rampal ◽  
Nahidul Wari ◽  
Amit Kumar Singh ◽  
Ujjwalkumar Das ◽  
Sawan Bopanna ◽  
...  

Abstract Background All-trans retinoic acid (RA) plays a crucial role in promoting Foxp3+ Treg generation while reciprocally inhibiting Th1/Th17 generation. Our previous research highlighted that in the face of inflammatory conditions, RA plays a contrary role where it aggravates intestinal inflammation by promoting interferon (IFN) γ and interleukin (IL)-17 differentiation in vitro. Methods In this study we translated our in vitro results into a clinical setting where we estimated mucosal and serum RA levels along with the immunophenotypic profile (IL-17, IFNγ, Foxp3, IL-10) in adaptive (CD4, CD8) and innate-like T cells (mucosal associated invariant T cells and γδ T cells) in patients with ulcerative colitis in remission or with active inflammation. Results This is the first study to estimate RA levels in the human gut and shows that patients with active disease had increased mucosal RA levels as compared with patients in remission (4.0 vs 2.5 ng/mL; P < 0.01) and control patients (3.4 vs 0.8 ng/mL; P < 0.0001). This effect was accompanied by significantly elevated IL-17 and IFNγ in tissue CD4+, CD8+, mucosal associated invariant T+ cells, and γδ + T cells. Moreover, the raised RA levels in patients with active disease showed a positive correlation with proinflammatory cytokines (IL-17, IFNγ) and a negative correlation with IL-10. We also found that RA negatively correlated with IL-9, thereby reinstating our previous finding that RA inhibits Th9 differentiation. Conclusions These data confirm our previous in vitro results that in the presence of inflammation, RA plays a crucial role in maintaining gut inflammation by upregulating proinflammatory markers.


2019 ◽  
Vol 30 (5) ◽  
pp. 566-578 ◽  
Author(s):  
Shuling Fan ◽  
Caroline M. Weight ◽  
Anny-Claude Luissint ◽  
Roland S. Hilgarth ◽  
Jennifer C. Brazil ◽  
...  

Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.


2016 ◽  
Vol 7 (1) ◽  
pp. 83-93 ◽  
Author(s):  
D.E. Romanin ◽  
S. Llopis ◽  
S. Genovés ◽  
P. Martorell ◽  
V.D. Ramón ◽  
...  

Inflammatory bowel diseases (IBDs) are complex affections with increasing incidence worldwide. Multiple factors are involved in the development and maintenance of the symptoms including enhanced oxidative stress in intestinal mucosa. The conventional therapeutic approaches for IBDs are based on the use anti-inflammatory drugs with important collateral effects and partial efficacy. In the present work we tested the anti-inflammatory capacity of Kluyveromyces marxianus CIDCA 8154 in different models. In vitro, we showed that the pretreatment of epithelial cells with the yeast reduce the levels of intracellular reactive oxygen species. Furthermore, in a murine model of trinitro benzene sulfonic acid-induced colitis, yeast-treated animals showed a reduced histopathological score (P<0.05) and lower levels of circulating interleukin 6 (P<0.05). The capacity to modulate oxidative stress in vivo was assessed using a Caenorhabditis elegans model. The yeast was able to protect the nematodes from oxidative stress by modulating the SKN-1 transcription factor trough the DAF-2 pathway. These results indicate that K. marxianus CIDCA 8154 could control the intestinal inflammation and cellular oxidative stress. Deciphering the mechanisms of action of different probiotics might be useful for the rational formulation of polymicrobial products containing microorganisms targeting different anti-inflammatory pathways.


2014 ◽  
Vol 306 (10) ◽  
pp. C899-C909 ◽  
Author(s):  
Aaron C. Koppel ◽  
Alexi Kiss ◽  
Anna Hindes ◽  
Carole J. Burns ◽  
Barry L. Marmer ◽  
...  

Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capacities of primary keratinocytes from Pyk2-KO and wild-type (WT) littermates to heal scratch wounds in vitro were compared. The rate of scratch wound repair was decreased in Pyk2-KO keratinocytes compared with WT cells. Moreover, cultured human epidermal keratinocytes overexpressing the dominant-negative mutant of Pyk2 failed to heal scratch wounds. Conversely, stimulation of Pyk2-dependent signaling via WT Pyk2 overexpression induced accelerated scratch wound closure and was associated with increased expression of matrix metalloproteinase (MMP)-1, MMP-9, and MMP-10. The Pyk2-stimulated increase in the rate of scratch wound repair was abolished by coexpression of the dominant-negative mutant of PKCδ and by GM-6001, a broad-spectrum inhibitor of MMP activity. These results suggest that Pyk2 is essential for skin wound reepithelialization in vivo and in vitro and that it regulates epidermal keratinocyte migration via a pathway that requires PKCδ and MMP functions.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi277-vi277
Author(s):  
Yingbin Xie ◽  
Luyue Chen ◽  
Junhu Zhou ◽  
Qixue Wang ◽  
Yunfei Wang ◽  
...  

Abstract Mesenchymal subtype of glioblastoma (mesGBM) is a refractory disease condition characterized by therapeutic failure and tumor recurrence, and for the past decade, no treatment option has improved the dismal prognosis of this disease. In Cancer Genome Atlas (TCGA) GBM datasets, two of the 840 transcriptomic signature genes for GBM subtyping, TGFβ1 and TGFβ receptor type II (TβRII), were exclusively upregulated in mesGBM, indicating hyperactive TGFβ signaling. In the present study, dysregulated microRNAs (miRNAs) were identified after LY2109761 (a TβRI/II inhibitor) treatment in a mesGBM-derived cell line. Importantly, several novel miRNAs that may be missing pieces of the puzzle of TGFβ signaling-mediated pathogenesis in mesGBM were identified. Novel_miR26/56/93/97/119 were validated by quantitative PCR to correlate with TGFβ signaling activity, and novel_miR56 was selected as a promising candidate for further functional verification. A proline-rich akt substrate of 40 kDa (PRAS40), which regulates autophagy initiation by targeting mTORC1, was confirmed to be a functional target of novel_miR56. Autophagy plays dichotomous roles in the determination of GBM cell fate, and in this study, TGFβ signaling-induced novel_miR56 seemed to inhibit autophagic activity in GBM and its mesenchymal subtype, resulting in the maintenance of proliferative capability. The pro-survival effect of novel_miR56 can be impeded by intentionally downregulating its expression both in vivo and in vitro. In summary, we provide novel insight into TGFβ signaling-mediated pathogenesis and targets for the development of novel therapeutic interventions for mesGBM.


2002 ◽  
Vol 282 (3) ◽  
pp. C434-C450 ◽  
Author(s):  
Terence Chiu ◽  
Steven S. Wu ◽  
Chintda Santiskulvong ◽  
Pisit Tangkijvanich ◽  
Hal F. Yee ◽  
...  

The role of G protein-coupled receptors and their ligands in intestinal epithelial cell signaling and proliferation is poorly understood. Here, we demonstrate that arginine vasopressin (AVP) induces multiple intracellular signal transduction pathways in rat intestinal epithelial IEC-18 cells via a V1A receptor. Addition of AVP to these cells induces a rapid and transient increase in cytosolic Ca2+concentration and promotes protein kinase D (PKD) activation through a protein kinase C (PKC)-dependent pathway, as revealed by in vitro kinase assays and immunoblotting with an antibody that recognizes autophosphorylated PKD at Ser916. AVP also stimulates the tyrosine phosphorylation of the nonreceptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) and promotes Src family kinase phosphorylation at Tyr418, indicative of Src activation. AVP induces extracellular signal-related kinase (ERK)-1 (p44mapk) and ERK-2 (p42mapk) activation, a response prevented by treatment with mitogen-activated protein kinase kinase (MEK) inhibitors (PD-98059 and U-0126), specific PKC inhibitors (GF-I and Ro-31-8220), depletion of Ca2+ (EGTA and thapsigargin), selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (tyrphostin AG-1478, compound 56), or the selective Src family kinase inhibitor PP-2. Furthermore, AVP acts as a potent growth factor for IEC-18 cells, inducing DNA synthesis and cell proliferation through ERK-, Ca2+-, PKC-, EGFR tyrosine kinase-, and Src-dependent pathways.


Sign in / Sign up

Export Citation Format

Share Document