scholarly journals Antifungal and anti-inflammatory potential of the endangered aromatic plant Thymus albicans

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mariana Roxo ◽  
Mónica Zuzarte ◽  
Maria José Gonçalves ◽  
Jorge M. Alves-Silva ◽  
Carlos Cavaleiro ◽  
...  

Abstract Thymus albicans is an endemic species of the Iberian Peninsula with a vulnerable conservation status. In an attempt to contribute to the valorization of this species, the present study brings new insights on the antifungal and anti-inflammatory mechanism of action of T. albicans essential oil. The antifungal activity of the oil and its major compounds was assessed for the first time against standard and clinically isolated strains of yeasts and filamentous fungi. The effect on the two major virulence factors of Candida albicans (germ tube formation and biofilm disruption) was considered in more detail. At 0.08 μL/mL, the oil inhibited C. albicans germ tube formation by more than 40% and decreased biofilm biomass at MIC values, thus pointing out its antivirulent potential. The anti-inflammatory activity of the essential oil was investigated on LPS-stimulated mouse macrophages (RAW 264.7) by evaluating the levels of several pro-inflammatory mediators, namely nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). T. albicans oil reduced the production of nitrites, a NO derived sub-product, at non-cytotoxic concentrations of 0.32 and 0.64 μL/mL, by 27 and 41%, respectively. In addition, the iNOS protein levels of essential oil pre-treated cells were reduced by 14%. Overall, the high essential oil yield of T. albicans as well as its bioactive effects at concentrations without cytotoxicity, encourage further studies on the potential pharmacological applications of this species. Furthermore, these results raise awareness for the need to preserve endangered species that may hold relevant medicinal value.

2021 ◽  
Author(s):  
Jong Min Han ◽  
Ina Yun ◽  
Kyung Mi Yang ◽  
Hye-Sung Kim ◽  
Young-Youn Kim ◽  
...  

Abstract Dysregulation of infection-derived inflammatory responses has been one of the crucial pathological causes of oral diseases. Even though the organic extracts of Astilbe chinensis have been frequently reported to have anti-inflammatory activity, the study on the extract of A. chinensis inflorescence has yet to be reported. Here, we evaluated the anti-inflammatory efficacy of A. chinensis collected from a variety of regions and seasons and successfully demonstrated that GA-13-6, an ethanol extract of A. chinensis inflorescence collected in a flowering season, inhibited the production of inflammatory mediators and proinflammatory cytokines, such as nitric oxide (NO), tumor necrosis factor (TNF), and interleukin-6 (IL-6) and suppressed the expression of cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) both in mRNA and protein levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Importantly, we for the first time confirmed that GA-13-6 efficiently inhibited the growth of Porphyromonas gingivalis, Streptococcus sanguinis, and Streptococcus mutans, showing that GA-13-6 possesses antibacterial activity against these pivotal oral pathogens. Thus, GA-13-6 is a potential active ingredient not only for the treatment or prevention of periodontal and dental diseases but many other inflammation-related diseases.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1789 ◽  
Author(s):  
Ara Jo ◽  
Hyun Ji Yoo ◽  
Mina Lee

Nandina domestica (Berberidaceae) has been used in traditional medicine for the treatment of cough. This plant is distributed in Korea, Japan, China, and India This study aimed to investigate the anti-inflammatory phytochemicals obtained from the N. domestica fruits. We isolated a biflavonoid-type phytochemical, robustaflavone (R), from N. domestica fruits through bioactivity-guided fractionation based on its capacity to inhibit inflammation. The anti-inflammatory mechanism of R isolated from N. domestica has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of R using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that R reduces the production of nitric oxide (NO), pro-inflammatory cytokine interleukin-1 beta (IL-1β), and IL-6. Western blot analysis showed that R suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and downregulates the expression of LPS-induced nuclear factor-kappa B (NF-κB) and the phosphorylation of extracellular-regulated kinases (pERK 1/2). Moreover, R inhibited IL-8 release in LPS-induced human colonic epithelial cells (HT-29). These results suggest that R could be a potential therapeutic candidate for inflammatory bowel disease (IBD).


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 330 ◽  
Author(s):  
Renato B. Pereira ◽  
David M. Pereira ◽  
Carlos Jiménez ◽  
Jaime Rodríguez ◽  
Rosa M. Nieto ◽  
...  

Sea hares of Aplysia genus are recognized as a source of a diverse range of metabolites. 5α,8α-Endoperoxides belong to a group of oxidized sterols commonly found in marine organisms and display several bioactivities, including antimicrobial, anti-tumor, and immunomodulatory properties. Herein we report the isolation of 5α,8α-epidioxycholest-6-en-3β-ol (EnP(5,8)) from Aplysia depilans Gmelin, based on bioguided fractionation and nuclear magnetic resonance (NMR) analysis, as well as the first disclosure of its anti-inflammatory properties. EnP(5,8) revealed capacity to decrease cellular nitric oxide (NO) levels in RAW 264.7 macrophages treated with lipopolysaccharide (LPS) by downregulation of the Nos2 (inducible nitric oxide synthase, iNOS) gene. Moreover, EnP(5,8) also inhibited the LPS-induced expression of cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) at the mRNA and protein levels. Mild selective inhibition of COX-2 enzyme activity was also evidenced. Our findings provide evidence of EnP(5,8) as a potential lead drug molecule for the development of new anti-inflammatory agents.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1895
Author(s):  
Azra Memon ◽  
Bae Yong Kim ◽  
Se-eun Kim ◽  
Yuliya Pyao ◽  
Yeong-Geun Lee ◽  
...  

Background: Phytoncide is known to have antimicrobial and anti-inflammatory properties. Purpose: This study was carried out to confirm the anti-inflammatory activity of two types of phytoncide extracts from pinecone waste. Methods: We made two types of animal models to evaluate the efficacy, an indomethacin-induced gastroenteritis rat model and a dextran sulfate sodium-induced colitis mouse model. Result: In the gastroenteritis experiment, the expression of induced-nitric oxide synthase (iNOS), a marker for inflammation, decreased in the phytoncide-supplemented groups, and gastric ulcer development was significantly inhibited (p < 0.05). In the colitis experiment, the shortening of the colon length and the iNOS expression were significantly suppressed in the phytoncide-supplemented group (p < 0.05). Conclusions: Through this study, we confirmed that phytoncide can directly inhibit inflammation in digestive organs. Although further research is needed, we conclude that phytoncide has potential anti-inflammatory properties in the digestive tract and can be developed as a functional agent.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 90
Author(s):  
Yun Kim ◽  
Yeong Ji ◽  
Na-Hyun Kim ◽  
Nguyen Van Tu ◽  
Jung-Rae Rho ◽  
...  

Using bio-guided fractionation and based on the inhibitory activities of nitric oxide (NO) and prostaglandin E2 (PGE2), eight isoquinolinequinone derivatives (1–8) were isolated from the marine sponge Haliclona sp. Among these, methyl O-demethylrenierate (1) is a noble ester, whereas compounds 2 and 3 are new O-demethyl derivatives of known isoquinolinequinones. Compound 8 was assigned as a new 21-dehydroxyrenieramycin F. Anti-inflammatory activities of the isolated compounds were tested in a co-culture system of human epithelial Caco-2 and THP-1 macrophages. The isolated derivatives showed variable activities. O-demethyl renierone (5) showed the highest activity, while 3 and 7 showed moderate activities. These bioactive isoquinolinequinones inhibited lipopolysaccharide and interferon gamma-induced production of NO and PGE2. Expression of inducible nitric oxide synthase, cyclooxygenase-2, and the phosphorylation of MAPKs were down-regulated in response to the inhibition of NF-κB nuclear translocation. In addition, nuclear translocation was markedly promoted with a subsequent increase in the expression of HO-1. Structure-activity relationship studies showed that the hydroxyl group in 3 and 5, and the N-formyl group in 7 may be key functional groups responsible for their anti-inflammatory activities. These findings suggest the potential use of Haliclona sp. and its metabolites as pharmaceuticals treating inflammation-related diseases including inflammatory bowel disease.


Nitric Oxide ◽  
2017 ◽  
Vol 66 ◽  
pp. 53-61 ◽  
Author(s):  
Emanuela Ferretti ◽  
Eric Tremblay ◽  
Marie-Pier Thibault ◽  
David Grynspan ◽  
Karolina M. Burghardt ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Heng-Jie Cheng ◽  
Tiankai Li ◽  
Che Ping Cheng

Background: Sildenafil (SIL), a selective inhibitor of PDE5 has been shown to exert profound beneficial effects in heart failure (HF). Recently we further found that SIL caused regression of cardiac dysfunction in a rat model with isoproterenol (ISO)-induced progressive HF. However, the molecular basis is unclear. We hypothesized that reversal of HF-induced detrimental alterations on the expressions of cardiac SR Ca 2+ -ATPase (SERCA2a), β-adrenergic receptors (AR) and nitric oxide synthase (NOS) isoforms by SIL may play a key role for its salutary role in HF. Methods: Left ventricular (LV) and myocyte function and the protein levels of myocyte β 1 - and β 3 - AR, SERCA2a, phospholamban (PLB) and three NOS were simultaneously evaluated in 3 groups of male rats (6/group): HF , 3 months (M) after receiving ISO (170 mg/kg sq for 2 days); HF/SIL , 2 M after receiving ISO, SIL (70 μg/kg/day sq via mini pump) was initiated and given for 1 M; and Controls (C). Results: Compared with controls, ISO-treated rats progressed to severe HF at 3 M after ISO followed by significantly decreased LV contractility (E ES , HF: 0.7 vs C: 1.2 mmHg/μl) and slowed LV relaxation, reductions in the peak velocity of myocyte shortening (77 vs 136 μm/sec), relengthening (62 vs 104 μm/sec) and [Ca 2+ ] iT (0.15 vs 0.24) accompanied by a diminished myocyte inotropic response to β-AR agonist, ISO (10 -8 M). These abnormalities were associated with concomitant significant decreases in myocyte protein levels of β 1 -AR (0.23 vs 0.64), SERCA2a (0.46 vs 0.80), PLB Ser16 /PLB ratio (0.24 vs 0.40) and eNOS (0.28 vs 0.46), but significantly increases in protein levels of β 3 -AR (0.29 vs 0.10) and iNOS (0.18 vs 0.08) with relatively unchanged nNOS. Chronic SIL prevented the HF-induced decreases in LV and myocyte contraction, relaxation, peak [Ca 2+ ] iT , and restored normal myocyte contractile response to ISO stimulation. With SIL, protein levels of myocyte β 1 - and β 3 -AR, SERCA2a were restored close to control values, but eNOS was significantly elevated than controls (0.77). Conclusions: Chronic SIL prevents HF-caused downregulation of cardiac β 1 -AR and reverse contrast changes between iNOS and β 3 -AR with SERCA 2a and eNOS expression, leading to the preservation of LV and myocyte function, [Ca 2+ ] iT , and β-adrenergic reserve.


Sign in / Sign up

Export Citation Format

Share Document