scholarly journals Evaluation of organ glucose metabolism by 18F-FDG accumulation with insulin loading in aged mice compared with young normal mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingmin Zhao ◽  
Chengbo Tan ◽  
Ryota Imai ◽  
Naoyuki Ukon ◽  
Saki Shimoyama ◽  
...  

AbstractIt is important to determine the functional changes of organs that occur as a result of aging, the understanding of which may lead to the maintenance of a healthy life. Glucose metabolism in healthy bodies is one of the potential markers used to evaluate the changes of organ function. Thus, information about normal organ glucose metabolism may help to understand the functional changes of organs. [18F]-Fluoro-2-deoxy-2-d-glucose (18F-FDG), a glucose analog, has been used to measure glucose metabolism in various fields, such as basic medical research and drug discovery. However, glucose metabolism changes in aged animals have not yet been fully clarified. The aim of this study is to evaluate changes in glucose metabolism in organs and brain regions by measuring 18F-FDG accumulation and 18F-FDG autoradiography with insulin loading in aged and young wild-type mice. In the untreated groups, the levels of 18F-FDG accumulation in the blood, plasma, muscle, lungs, spleen, pancreas, testes, stomach, small intestine, kidneys, liver, brain, and brain regions, namely, the cortex, striatum, thalamus, and hippocampus, were all significantly higher in the aged mice. The treated group showed lower 18F-FDG accumulation levels in the pancreas and kidneys, as well as in the cortex, striatum, thalamus, and hippocampus in the aged mice than the untreated groups, whereas higher 18F-FDG accumulation levels were observed in those in the young mice. These results demonstrate that insulin loading decreases effect on 18F-FDG accumulation levels in some organs of the aged mice. Therefore, aging can increase insulin resistance and lead to systemic glucose metabolism dysfunction.

2020 ◽  
Author(s):  
Jingmin Zhao ◽  
Chengbo Tan ◽  
Ryota Imai ◽  
Naoyuki Ukon ◽  
Saki Shimoyama ◽  
...  

Abstract It is important to determine the functional changes of organs that occur as a result of aging, the understanding of which may lead to the maintenance of a healthy life. Glucose metabolism in healthy bodies is one of the potential markers used to evaluate the changes of organ function. Thus, information about normal organ glucose metabolism may help to understand the functional changes of organs. [18F]-Fluoro-2-deoxy-2-D-glucose (18F-FDG), a glucose analog, has been used to measure glucose metabolism in various fields, such as basic medical research and drug discovery. However, glucose metabolism changes in super-aged animals have not yet been fully clarified. The aim of this study is to evaluate changes in glucose metabolism in organs and brain regions by measuring 18F-FDG accumulation and 18F-FDG autoradiography with insulin loading in super-aged and young wild-type mice. In control groups, the levels of 18F-FDG accumulation in the blood, plasma, muscle, lungs, spleen, pancreas, testes, stomach, small intestine, kidneys, liver, brain, and brain regions, namely, the cortex, striatum, thalamus, and hippocampus, were all significantly higher in the super-aged mice. After insulin loading, the 18F-FDG accumulation levels showed negative changes in the pancreas and kidneys, as well as in the cortex, striatum, thalamus, and hippocampus in the super-aged mice, whereas positive changes were observed in those in the young mice. These results demonstrate that insulin loading decreases effect on 18F-FDG accumulation levels in some organs of the super-aged mice. Therefore, aging can increase insulin resistance and lead to systemic glucose metabolism dysfunction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jingmin Zhao ◽  
Ryota Imai ◽  
Naoyuki Ukon ◽  
Saki Shimoyama ◽  
Chengbo Tan ◽  
...  

Introduction: A recent clinical study revealed that Ninjin'yoeito (NYT) may potentially improve cognitive outcome. However, the mechanism by which NYT exerts its effect on elderly patients remains unclear. The aim of this study is to evaluate the effect of Ninjin'yoeito on regional brain glucose metabolism by 18F-FDG autoradiography with insulin loading in aged wild-type mice.Materials and Methods: After 12 weeks of feeding NYT, mice were assigned to the control and insulin-loaded groups and received an intraperitoneal injection of human insulin (2 U/kg body weight) 30 min prior to 18F-FDG injection. Ninety minutes after the injection, brain autoradiography was performed.Results: After insulin loading, the 18F-FDG accumulation showed negative changes in the cortex, striatum, thalamus, and hippocampus in the control group, whereas positive changes were observed in the NYT-treated group.Conclusions: Ninjin'yoeito may potentially reduce insulin resistance in the brain regions in aged mice, thereby preventing age-related brain diseases.


2021 ◽  
pp. 0271678X2098150
Author(s):  
June van Aalst ◽  
Jenny Ceccarini ◽  
Stefan Sunaert ◽  
Patrick Dupont ◽  
Michel Koole ◽  
...  

Preclinical and postmortem studies have suggested that regional synaptic density and glucose consumption (CMRGlc) are strongly related. However, the relation between synaptic density and cerebral glucose metabolism in the human brain has not directly been assessed in vivo. Using [11C]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A) as indicator for synaptic density and [18F]FDG for measuring cerebral glucose consumption, we studied twenty healthy female subjects (age 29.6 ± 9.9 yrs) who underwent a single-day dual-tracer protocol (GE Signa PET-MR). Global measures of absolute and relative CMRGlc and specific binding of [11C]UCB-J were indeed highly significantly correlated ( r > 0.47, p < 0.001). However, regional differences in relative [18F]FDG and [11C]UCB-J uptake were observed, with up to 19% higher [11C]UCB-J uptake in the medial temporal lobe (MTL) and up to 17% higher glucose metabolism in frontal and motor-related areas and thalamus. This pattern has a considerable overlap with the brain regions showing different levels of aerobic glycolysis. Regionally varying energy demands of inhibitory and excitatory synapses at rest may also contribute to this difference. Being unaffected by astroglial and/or microglial energy demands, changes in synaptic density in the MTL may therefore be more sensitive to early detection of pathological conditions compared to changes in glucose metabolism.


2020 ◽  
Author(s):  
Matthew J. Van Hook ◽  
Corrine Monaco ◽  
Jennie C. Smith

AbstractHomeostatic plasticity plays important roles in regulating synaptic and intrinsic neuronal function to stabilize output following perturbations to circuit activity. In glaucoma, a neurodegenerative disease of the visual system commonly associated with elevated intraocular pressure (IOP), early disease is associated with altered synaptic inputs to retinal ganglion cells (RGCs), changes in RGC intrinsic excitability, and deficits in optic nerve transport and energy metabolism. These early functional changes can precede RGC degeneration and are likely to alter RGC outputs to their target structures in the brain and thereby trigger homeostatic changes in synaptic and neuronal properties in those brain regions. In this study, we sought to determine whether and how neuronal and synaptic function is altered in the dorsal lateral geniculate nucleus (dLGN), an important RGC projection target in the thalamus, and how functional changes relate to IOP. We accomplished this using patch-clamp recordings from thalamocortical (TC) relay neurons in the dLGN in two established mouse models of glaucoma – the DBA/2J (D2) genetic mouse model and an inducible glaucoma model with intracameral microbead injections to elevate IOP. We found that the intrinsic excitability of TC neurons was enhanced in D2 mice and these functional changes were mirrored in recordings of TC neurons from microbead-injected mice. Notably, many neuronal properties were correlated with IOP in older D2 mice, but not younger D2 mice or microbead-injected mice. The frequency of miniature excitatory synaptic currents (mEPSCs) was reduced in both ages of D2 mice, and vGlut2 staining of RGC synaptic terminals was reduced in an IOP-dependent manner in older D2 mice. Among D2 mice, functional changes observed in younger mice without elevated IOP were distinct from those observed in older mice with elevated IOP and RGC degeneration, suggesting that glaucoma-associated changes to neurons in the dLGN might represent a combination of stabilizing/homeostatic plasticity at earlier stages and pathological dysfunction at later stages.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 38-38
Author(s):  
Marina Feigenson ◽  
Remya Nathan ◽  
Keith Babbs ◽  
Christopher Materna ◽  
Claire C Tseng ◽  
...  

Hemopoietic system control the production of circulating blood cells that have important functions from transport of oxygen and carbon dioxide, blood clotting to fighting infections. Not surprisingly, the system is tightly regulated and failure to replenish RBC can result in anemia and inadequate platelets increases the risk of bleeding. Impaired hematopoiesis and the consequential cytopenias are associated with aging, diseases characterized by ineffective hematopoiesis including myelodysplastic syndrome (MDS) and myelofibrosis and diseases that lead to loss of growth factors. A therapeutic that could act more globally on the hematopoietic pathway would have the potential to overcome cytopenia in many diseases. Signaling of the TGFβ superfamily regulates several stages of RBC maturation, and recent studies demonstrate that inhibition of TGFβ signaling can induce RBC production and increase circulating RBCs, HGB, and hematocrit (HCT). KER-050, a modified ActRIIA ligand trap, has been shown to increase RBCs in rodents and non-human primates, and to increase both RBCs and PLTs in healthy human volunteers. In the current studies, we aimed to test the efficacy of KER-050 in alleviating cytopenias caused by multiple conditions and to further delineate the effect of KER-050 on platelets. First, we examined whether RKER-050 (a research form of KER-050) can reverse anemia associated with aging and frailty. After 6 weeks of twice weekly treatment, 2-year-old aged, vehicle-treated (AV) mice had significantly lower RBCs, HGB, and HCT (-14.0%, -13.5%, -10.9%, respectively) relative to 11-week-old young vehicle-treated mice (YV). However, aged mice treated with RKER-050 had higher RBCs, HGB, and HCT (+12.3%, +10.0%, +9.1%, respectively) compared to AV, with levels indistinguishable from those of YV. These data support that RKER-050 can improve anemia that arises from aging. Next, we evaluated the efficacy of RKER-050 in the treatment of anemia in an animal model of MDS. NUP98-HOXD13 mice, a murine model of MDS, aged to 6 months and confirmed as anemic prior to treatment, were dosed twice weekly with either vehicle or RKER-050 for 6 weeks. Over this treatment period, vehicle-treated MDS mice continued to have significantly reduced RBCs, HGB, and HCT compared to wildtype controls. In contrast, RKER-050-treated MDS mice had increases in RBCs, HGB, and HCT (+10.9%, +11.2%, + 9.8%, respectively), achieving values comparable to the wild type control animal of the same age. These data support that RKER-050 reverses anemia in a mouse model of MDS. Finally, we evaluated whether RKER-050 can improve anemia after acute blood loss. Anemia was induced by bleeding 20% of total blood volume in Sprague Dawley rats followed by treatment with RKER-050 twice weekly. After phlebotomy, the RKER-050-treated group had early, robust increases in both RBCs and HGB that exceeded baseline levels, whereas decreased RBCs and HGB in the vehicle-treated group persisted longer. Moreover, while vehicle PLTs were unchanged over the study, RKER-050 treatment resulted in an increase in PLT count at Day 3 post-phlebotomy which remained elevated at Day 6. These data suggest that in cases of acute bleeding, RKER-050 not only rapidly increases RBCs but also PLTs, potentially demonstrating a pancytopenic effect of RKER-050. Our data suggest that RKER-050 is a fast-acting modulator of RBC maturation that rapidly increases RBCs, HGB, and HCT. The increases were observed in aged mice showing signs of age-associated anemia, as well as in mice with chronic conditions such as MDS. Moreover, RKER-050 showed rapid recovery in a model of acute bleeding with an effect on both erythropoiesis and thrombopoiesis. These results suggest that KER-050 could be developed for the treatment of anemias and potentially other cytopenias, including thrombocytopenia, arising from a variety of causes. Disclosures Feigenson: Keros Therapeutics: Current Employment. Nathan:Keros Therapeutics: Current Employment. Babbs:Keros Therapeutics: Current Employment. Materna:Keros Therapeutics: Current Employment. Tseng:Mitobridge: Current equity holder in private company; Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties. Fisher:Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company. Seehra:Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company. Lachey:Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company.


2020 ◽  
Vol 91 (7) ◽  
pp. 703-711
Author(s):  
Mark John Kelly ◽  
Fahd Baig ◽  
Michele Tao-Ming Hu ◽  
David Okai

Impulse control behaviours (ICBs) are a range of behaviours linked by their reward-based, repetitive natures. They can be precipitated in Parkinson’s disease (PD) by dopamine replacement therapy, often with detrimental consequences for patients and caregivers. While now a well-recognised non-motor feature of treated PD, much remains unknown about the influence of risk factors, pathophysiological mechanisms, vulnerability factors for specific types of behaviour and the optimal management strategies. Imaging studies have identified structural and functional changes in striatal and prefrontal brain regions, among others. Gene association studies indicate a role for genetic predisposition to PD-ICB. Clinical observational studies have identified potential modifiable and non-modifiable risk factors. Psychological studies shed light on the neurocognitive domains implicated in PD-ICBs and identify psychosocial determinants that may perpetuate the cycle of impulsive and harm-avoidance behaviours. Based on these results, a range of pharmacological and non-pharmacological management strategies have been trialled in PD-ICBs with varying success. The purpose of this review is to update clinicians on the evidence around the pathophysiology of PD-ICB. We aim to translate our findings into an interpretable biopsychosocial model that can be applied to the clinical assessment and management of individual cases of PD-ICB.


Metabolites ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 40 ◽  
Author(s):  
Bo Yang ◽  
Runting Li ◽  
Taeseon Woo ◽  
Jimmy Browning ◽  
Hailong Song ◽  
...  

The abundance of docosahexaenoic acid (DHA) in the mammalian brain has generated substantial interest in the search for its roles in regulating brain functions. Our recent study with a gene/stress mouse model provided evidence to support the ability for the maternal supplement of DHA to alleviate autism-associated behavior in the offspring. DHA and arachidonic acid (ARA) are substrates of enzymatic and non-enzymatic reactions, and lipid peroxidation results in the production of 4-hydroxyhexenal (4-HHE) and 4-hydroxynonenal (4-HNE), respectively. In this study, we examine whether a maternal DHA-supplemented diet alters fatty acids (FAs), as well as lipid peroxidation products in the pup brain, heart and plasma by a targeted metabolite approach. Pups in the maternal DHA-supplemented diet group showed an increase in DHA and a concomitant decrease in ARA in all brain regions examined. However, significant increases in 4-HHE, and not 4-HNE, were found mainly in the cerebral cortex and hippocampus. Analysis of heart and plasma showed large increases in DHA and 4-HHE, but a significant decrease in 4-HNE levels only in plasma. Taken together, the DHA-supplemented maternal diet alters the (n-3)/(n-6) FA ratio, and increases 4-HHE levels in pup brain, heart and plasma. These effects may contribute to the beneficial effects of DHA on neurodevelopment, as well as functional changes in other body organs.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Stefano Lello ◽  
Andrea Cavani

Estroprogestins (EPs) are combinations of estrogen and progestin with several actions on women’s health. The different pharmacological composition of EPs is responsible for different clinical effects. One of the most used low-dose EP associations is ethinylestradiol 20 mcg plus levonorgestrel 100 mcg in monophasic regimen (EE20/LNG100). This review summarizes clinical pharmacology, cycle control, and effects on lipid and glucose metabolism, coagulation, body weight/body composition, acne, and sexuality of EE20/LNG100. Overall, EE20/LNG100 combination is safe and well tolerated, and in several studies the incidence of adverse events in the treated group was comparable to that of the placebo group. Cycle control was effective and body weight/body composition did not vary among treated and untreated groups in most studies. The EE20/LNG100 combination shows mild or no effect on lipid and glucose metabolism. Lastly, EE20/LNG100 is associated with a low risk of venous thromboembolism (VTE). In conclusion, in the process of decision making for the individualization of EPs choice, EE20/LNG100 should be considered for its favorable clinical profile.


2014 ◽  
Vol 92 ◽  
pp. 0-0 ◽  
Author(s):  
A IÑIGO PORTUGUÉS ◽  
I ALCALDE ◽  
O GONZÁLEZ-GONZÁLEZ ◽  
J GALLAR ◽  
C BELMONTE ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mi Ri Park ◽  
Minhye Shin ◽  
Daye Mun ◽  
Seong-Yeop Jeong ◽  
Do-Youn Jeong ◽  
...  

AbstractIncreasing evidence indicates that alterations in gut microbiota are associated with mammalian development and physiology. The gut microbiota has been proposed as an essential player in metabolic diseases including brain health. This study aimed to determine the impact of probiotics on degenerative changes in the gut microbiota and cognitive behavior. Assessment of various behavioral and physiological functions was performed using Y-maze tests, wheel running tests, accelerated rotarod tests, balance beam tests, and forced swimming tests (FSTs), using adult mice after 50 weeks of administering living probiotic bacterium Lactobacillus fermentum strain JDFM216 or a vehicle. Immunomodulatory function was investigated using immune organs, immune cells and immune molecules in the mice, and gut microbiota was also evaluated in their feces. Notably, the L. fermentum JDFM216-treated group showed significantly better performance in the behavior tests (P < 0.05) as well as improved phagocytic activity of macrophages, enhanced sIgA production, and stimulated immune cells (P < 0.05). In aged mice, we observed decreases in species belonging to the Porphyromonadaceae family and the Lactobacillus genus when compared to young mice. While administering the supplementation of L. fermentum JDFM216 to aged mice did not shift the whole gut microbiota, the abundance of Lactobacillus species was significantly increased (P < 0.05). Our findings suggested that L. fermentum JDFM216 also provided beneficial effects on the regulation of immune responses, which has promising implications for functional foods. Taken together, L. fermentum JDFM216 could confer the benefit of improving health with enhanced cognition, physiological behavior, and immunity by modulating the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document