scholarly journals Macrophage autophagy protects against hepatocellular carcinogenesis in mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anthony Deust ◽  
Marie-Noële Chobert ◽  
Vanessa Demontant ◽  
Guillaume Gricourt ◽  
Timothé Denaës ◽  
...  

AbstractAutophagy is a lysosomal degradation pathway of cellular components that regulates macrophage properties. Macrophages are critically involved in tumor growth, metastasis, angiogenesis and immune suppression. Here, we investigated whether macrophage autophagy may protect against hepatocellular carcinoma (HCC). Experiments were performed in mice with deletion of the autophagy gene Atg5 in the myeloid lineage (ATG5Mye−/− mice) and their wild-type (WT) littermates. As compared to WT, ATG5Mye−/− mice were more susceptible to diethylnitrosamine (DEN)-induced hepatocarcinogenesis, as shown by enhanced tumor number and volume. Moreover, DEN-treated ATG5Mye−/− mice exhibited compromised immune cell recruitment and activation in the liver, suggesting that macrophage autophagy invalidation altered the antitumoral immune response. RNA sequencing showed that autophagy-deficient macrophages sorted from DEN mice are characterized by an enhanced expression of immunosuppressive markers. In vitro studies demonstrated that hepatoma cells impair the autophagy flux of macrophages and stimulate their expression of programmed cell death-ligand 1 (PD-L1), a major regulator of the immune checkpoint. Moreover, pharmacological activation of autophagy reduces hepatoma cell-induced PD-L1 expression in cultured macrophages while inhibition of autophagy further increases PD-L1 expression suggesting that autophagy invalidation in macrophages induces an immunosuppressive phenotype. These results uncover macrophage autophagy as a novel protective pathway regulating liver carcinogenesis.

2021 ◽  
Vol 13 (4) ◽  
pp. 87-97
Author(s):  
Jiaquan Yu ◽  
Amber Piazza ◽  
Sidney Sparks ◽  
Laurel E Hind ◽  
David J Niles ◽  
...  

Abstract Innate immune cell infiltration into neoplastic tissue is the first line of defense against cancer and can play a deterministic role in tumor progression. Here, we describe a series of assays, using a reconfigurable microscale assay platform (i.e. Stacks), which allows the study of immune cell infiltration in vitro with spatiotemporal manipulations. We assembled Stacks assays to investigate tumor–monocyte interactions, re-education of activated macrophages, and neutrophil infiltration. For the first time in vitro, the Stacks infiltration assays reveal that primary tumor-associated fibroblasts from specific patients differ from that associated with the benign region of the prostate in their ability to limit neutrophil infiltration as well as facilitate monocyte adhesion and anti-inflammatory monocyte polarization. These results show that fibroblasts play a regulatory role in immune cell infiltration and that Stacks has the potential to predict individual patients’ cancer-immune response.


2022 ◽  
Author(s):  
Sarah Johnson ◽  
Yaroslava Karpova ◽  
Danping Guo ◽  
Atreyi Ghatak ◽  
Dmitriy A. Markov ◽  
...  

Abstract Chemokines are highly expressed in tumor microenvironment and play a critical role in all aspects of tumorigenesis, including the recruitment of tumor-promoting immune cells, activation of cancer-associated fibroblasts, angiogenesis, metastasis, and growth. Poly(ADP-ribose) polymerase (PARP) is a multi-target transcription regulator with high levels of poly(ADP-ribose) (pADPr) being reported in a variety of cancers. Furthermore, poly(ADP-ribose) glycohydrolase (PARG), an enzyme that degrades pADPr, has been reported to be downregulated in tumor tissues with abnormally high levels of pADPr. In conjunction to this, we have recently reported that the reduction of pADPr, by either pharmacological inhibition of PARP or PARG’s overexpression, disrupts renal carcinoma cell malignancy in vitro. Here, we use 3T3 mouse embryonic fibroblasts, a universal model for malignant transformation, to follow the effect of PARG upregulation on cells’ tumorigenicity in vivo. We found that the overexpression of PARG in mouse allografts produces significantly smaller tumors with a delay in tumor onset. As downregulation of PARG has also been implicated in promoting the activation of pro-inflammatory genes, we also followed the gene expression profile of PARG-overexpressing 3T3 cells using RNA-seq approach and observed that chemokine transcripts are significantly reduced in those cells. Our data suggest that the upregulation of PARG may be potentially useful for the tumor growth inhibition in cancer treatment and as anti-inflammatory intervention.


2017 ◽  
Vol 9 (5) ◽  
pp. 437-440 ◽  
Author(s):  
Viviane Labrie ◽  
Patrik Brundin

Intraneuronal accumulation of misfolded alpha-synuclein in the central and peripheral nervous systems is strongly linked to Parkinson disease (PD) and other related synucleinopathies. In rare inherited forms of PD, point mutations or gene multiplications mediate the formation of alpha-synuclein protein aggregates. However, in most PD cases it is presumed that the combined effects of ageing and environmental factors drive the formation of alpha-synuclein aggregates. Despite advances regarding alpha-synuclein pathobiology, the normal functions of this protein and factors that regulate its expression are not well understood. We discuss a recent study reporting that viral infection induces alpha-synuclein expression in neurons of the gastrointestinal tract. Alpha-synuclein levels increased during norovirus infection in the duodenum of children. In an in vitro paradigm, monomeric and oligomeric alpha-synuclein acted as chemoattractants for neutrophils and monocytes, and promoted the maturation of dendritic cells. This suggests that alpha-synuclein facilitates immune responses to infection. We explore the possibility that intestinal infections, and associated inflammation, place individuals at increased risk of PD by increasing alpha-synuclein levels and promoting the formation of alpha-synuclein aggregates that propagate in a prion-like fashion via the vagal nerve to the brainstem.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Lakshmi Bollu ◽  
Derek Wainwright ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
...  

Abstract INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO; IDO1) is a rate-limiting enzyme that metabolizes the essential amino acid tryptophan into kynurenine. Recent work by our group has revealed that IDO promotes tumor development and suppresses immune cell functions independent of its enzyme activity. Moreover, pharmacologic IDO enzyme inhibitors that currently serve as the only class of drugs available for targeting immunosuppressive IDO activity, fail to improve the survival of patients with GBM. Here, we developed IDO-Proteolysis Targeting Chimeras (IDO-PROTACs). PROTACs bind to a specific protein and recruit an E3 ubiquitin ligase that enhance proteasome-mediated degradation of the target protein. METHODS A library of ≥100 IDO-PROTACs were developed by joining BMS986205 (IDO binder) with a linker group to various E3-ligase ligands. Western blot analysis of PROTAC-induced IDO degradation was tested in vitro among multiple human and mouse GBM cell lines including U87, GBM6, GBM43 and GL261 along a time course ranging between 1–96 hours of treatment and at varying concentrations. The mechanism of IDO protein degradation was investigated using pharmacologic ligands that inhibit or compete with the proteasome-mediated protein degradation pathway. RESULTS Primary screening identified several IDO-PROTACs with IDO protein degradation potential. Secondary screening showed that our lead compound has a DC50 value of ~0.5µM with an ability to degrade IDO in all GBM cells analyzed, and an initial activity within 12 hours of treatment that extended for up to 96 hours. Mutating the CRBN-binding ligand, pretreatment with the ubiquitin proteasome system inhibitors MG132 or MLN4924 or using unmodified parental compound all inhibited IDO protein degradation. CONCLUSIONS This study developed an initial IDO-PROTAC technology that upon further optimization, can neutralize both IDO enzyme and non-enzyme immunosuppressive effects. When combined with other forms of immunotherapy, IDO-PROTACs have the potential to substantially enhance immunotherapeutic efficacy in patients with GBM.


2021 ◽  
Vol 22 (3) ◽  
pp. 1118
Author(s):  
Abdulaziz Alamri ◽  
Derek Fisk ◽  
Deepak Upreti ◽  
Sam K. P. Kung

Dendritic cells (DC) connect the innate and adaptive arms of the immune system and carry out numerous roles that are significant in the context of viral disease. Their functions include the control of inflammatory responses, the promotion of tolerance, cross-presentation, immune cell recruitment and the production of antiviral cytokines. Based primarily on the available literature that characterizes the behaviour of many DC subsets during Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19), we speculated possible mechanisms through which DC could contribute to COVID-19 immune responses, such as dissemination of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to lymph nodes, mounting dysfunctional inteferon responses and T cell immunity in patients. We highlighted gaps of knowledge in our understanding of DC in COVID-19 pathogenesis and discussed current pre-clinical development of therapies for COVID-19.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruth Seelige ◽  
Robert Saddawi-Konefka ◽  
Nicholas M. Adams ◽  
Gaëlle Picarda ◽  
Joseph C. Sun ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 54
Author(s):  
Tobias Plowman ◽  
Dimitris Lagos

The highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the causative agent of coronavirus disease 2019 (COVID-19) in late 2019, igniting an unprecedented pandemic. A mechanistic picture characterising the acute immunopathological disease in severe COVID-19 is developing. Non-coding RNAs (ncRNAs) constitute the transcribed but un-translated portion of the genome and, until recent decades, have been undiscovered or overlooked. A growing body of research continues to demonstrate their interconnected involvement in the immune response to SARS-CoV-2 and COVID-19 development by regulating several of its pathological hallmarks: cytokine storm syndrome, haemostatic alterations, immune cell recruitment, and vascular dysregulation. There is also keen interest in exploring the possibility of host–virus RNA–RNA and RNA–RBP interactions. Here, we discuss and evaluate evidence demonstrating the involvement of short and long ncRNAs in COVID-19 and use this information to propose hypotheses for future mechanistic and clinical studies.


2013 ◽  
Vol 133 (9) ◽  
pp. 2138-2140
Author(s):  
Kimberley A. Beaumont ◽  
Marcia A. Munoz ◽  
Wolfgang Weninger

Sign in / Sign up

Export Citation Format

Share Document