scholarly journals Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
G. Di Capua ◽  
S. Sparrow ◽  
K. Kornhuber ◽  
E. Rousi ◽  
S. Osprey ◽  
...  

AbstractSummer 2010 saw two simultaneous extremes linked by an atmospheric wave train: a record-breaking heatwave in Russia and severe floods in Pakistan. Here, we study this wave event using a large ensemble climate model experiment. First, we show that the circulation in 2010 reflected a recurrent wave train connecting the heatwave and flooding events. Second, we show that the occurrence of the wave train is favored by three drivers: (1) 2010 sea surface temperature anomalies increase the probability of this wave train by a factor 2-to-4 relative to the model’s climatology, (2) early-summer soil moisture deficit in Russia not only increases the probability of local heatwaves, but also enhances rainfall extremes over Pakistan by forcing an atmospheric wave response, and (3) high-latitude land warming favors wave-train occurrence and therefore rainfall and heat extremes. These findings highlight the complexity and synergistic interactions between different drivers, reconciling some seemingly contradictory results from previous studies.

2013 ◽  
Vol 13 (8) ◽  
pp. 4413-4427 ◽  
Author(s):  
J. M. Siddaway ◽  
S. V. Petelina ◽  
D. J. Karoly ◽  
A. R. Klekociuk ◽  
R. J. Dargaville

Abstract. Chemistry-Climate Model Validation phase 2 (CCMVal-2) model simulations are used to analyze Antarctic ozone increases in 2000–2100 during local spring and early summer, both vertically integrated and at several pressure levels in the lower stratosphere. Multi-model median trends of monthly zonal mean total ozone column (TOC), ozone volume mixing ratio (VMR), wind speed and temperature poleward of 60° S are investigated. Median values are used to account for large variability in models, and the associated uncertainty is calculated using a bootstrapping technique. According to the trend derived from the twelve CCMVal-2 models selected, Antarctic TOC will not return to a 1965 baseline, an average of 1960–1969 values, by the end of the 21st century in September–November, but will return in ~2080 in December. The speed of December ozone depletion before 2000 was slower compared to spring months, and thus the decadal rate of December TOC increase after 2000 is also slower. Projected trends in December ozone VMR at 20–100 hPa show a much slower rate of ozone recovery, particularly at 50–70 hPa, than for spring months. Trends in temperature and winds at 20–150 hPa are also analyzed in order to attribute the projected slow increase of December ozone and to investigate future changes in the Antarctic atmosphere in general, including some aspects of the polar vortex breakup.


2018 ◽  
Vol 31 (18) ◽  
pp. 7209-7224 ◽  
Author(s):  
Jianqi Sun ◽  
Jing Ming ◽  
Mengqi Zhang ◽  
Shui Yu

In June 2017, south China suffered from intense rainfall that broke the record spanning the previous 70 years. In this study, the large-scale circulations associated with the south China June rainfall are analyzed. The results show that the anomalous Pacific–Japan (PJ) pattern is a direct influence on south China June rainfall or East Asian early summer rainfall. In addition, the Australian high was the strongest in June 2017 during the past 70 years, which can increase the equatorward flow to northern Australia and activate convection over the Maritime Continent. Enhanced convection over the Maritime Continent can further enhance local meridional circulation along East Asia, engendering downward motion over the tropical western North Pacific and enhancing the western Pacific subtropical high (WPSH) and upward motion over south China, which increases the rainfall therein. In addition, a strong wave train pattern associated with North Atlantic air–sea interaction was observed in June 2017 at Northern Hemispheric mid- to high latitudes; it originated from the North Atlantic and propagated eastward to East Asia, resulting in an anomalous anticyclone over the Mongolian–Baikal Lake region. This anomalous anticyclone produced strong northerly winds over East Asia that encountered the southerly associated with the WPSH over south China, thereby favoring intense rainfall over the region. Case studies of June 2017 and climate research based on data during 1979–2017 and 1948–2017 indicate that the extremities of the atmospheric circulation over south Europe and Australian high and their coupling with the PJ pattern could be responsible for the record-breaking south China rainfall in June 2017.


2019 ◽  
Vol 32 (21) ◽  
pp. 7173-7189 ◽  
Author(s):  
Alvaro de la Cámara ◽  
Thomas Birner ◽  
John R. Albers

Abstract A combination of 240 years of output from a state-of-the-art chemistry–climate model and a twentieth-century reanalysis product is used to investigate to what extent sudden stratospheric warmings are preceded by anomalous tropospheric wave activity. To this end we study the fate of lower tropospheric wave events (LTWEs) and their interaction with the stratospheric mean flow. These LTWEs are contrasted with sudden stratospheric deceleration events (SSDs), which are similar to sudden stratospheric warmings but place more emphasis on the explosive dynamical nature of such events. Reanalysis and model output provide very similar statistics: Around one-third of the identified SSDs are preceded by wave events in the lower troposphere, while two-thirds of the SSDs are not preceded by a tropospheric wave event. In addition, only 20% of all anomalous tropospheric wave events are followed by an SSD in the stratosphere. This constitutes statistically robust evidence that the anomalous amplification of wave activity in the stratosphere that drives SSDs is not necessarily due to an anomalous amplification of the waves in the source region (i.e., the lower troposphere). The results suggest that the dynamics in the lowermost stratosphere and the vortex geometry are essential, and should be carefully analyzed in the search for precursors of SSDs.


2019 ◽  
Vol 23 (3) ◽  
pp. 1409-1429 ◽  
Author(s):  
Sjoukje Philip ◽  
Sarah Sparrow ◽  
Sarah F. Kew ◽  
Karin van der Wiel ◽  
Niko Wanders ◽  
...  

Abstract. In August 2017 Bangladesh faced one of its worst river flooding events in recent history. This paper presents, for the first time, an attribution of this precipitation-induced flooding to anthropogenic climate change from a combined meteorological and hydrological perspective. Experiments were conducted with three observational datasets and two climate models to estimate changes in the extreme 10-day precipitation event frequency over the Brahmaputra basin up to the present and, additionally, an outlook to 2 ∘C warming since pre-industrial times. The precipitation fields were then used as meteorological input for four different hydrological models to estimate the corresponding changes in river discharge, allowing for comparison between approaches and for the robustness of the attribution results to be assessed. In all three observational precipitation datasets the climate change trends for extreme precipitation similar to that observed in August 2017 are not significant, however in two out of three series, the sign of this insignificant trend is positive. One climate model ensemble shows a significant positive influence of anthropogenic climate change, whereas the other large ensemble model simulates a cancellation between the increase due to greenhouse gases (GHGs) and a decrease due to sulfate aerosols. Considering discharge rather than precipitation, the hydrological models show that attribution of the change in discharge towards higher values is somewhat less uncertain than in precipitation, but the 95 % confidence intervals still encompass no change in risk. Extending the analysis to the future, all models project an increase in probability of extreme events at 2 ∘C global heating since pre-industrial times, becoming more than 1.7 times more likely for high 10-day precipitation and being more likely by a factor of about 1.5 for discharge. Our best estimate on the trend in flooding events similar to the Brahmaputra event of August 2017 is derived by synthesizing the observational and model results: we find the change in risk to be greater than 1 and of a similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach. This study shows that, for precipitation-induced flooding events, investigating changes in precipitation is useful, either as an alternative when hydrological models are not available or as an additional measure to confirm qualitative conclusions. Besides this, it highlights the importance of using multiple models in attribution studies, particularly where the climate change signal is not strong relative to natural variability or is confounded by other factors such as aerosols.


2013 ◽  
Vol 26 (23) ◽  
pp. 9621-9632 ◽  
Author(s):  
Robin T. Clark ◽  
Simon J. Brown

Atmospheric circulation patterns occurring on the warmest 10% of summer days for a region of Europe severely impacted by the 2003 heatwave have been identified using a perturbed parameter ensemble of regional high-resolution climate model simulations for the recent past. Changes in the frequency and duration of these circulation types, driven by the simulations following a moderate transient pathway of anthropogenic emissions, are then shown for the period 2070 to 2100. Increases in the future probability of hot days are then attributed separately to changes in the frequency and temperature intensity of the circulation types. Changes in temperature intensity are found to have an effect 2 to 3 times larger than in frequency. The authors then consider how model uncertainty in changes of future temperature within circulation patterns compares to the uncertainty irrespective of circulation, in an attempt to exclude contributions to the overall uncertainty arising from changes in circulation. Within individual patterns, the range of meteorological physical processes may be narrower. However, no reduction in uncertainty was found when single patterns were considered. Contributions to the lack of narrowing from circulation-type duration, model vegetation root depth and changes in cloud cover, pressure gradient, and continental-scale warming are subsequently examined using relationships between changes in surface latent heat and temperature. Vegetation root depth is found to be the greatest contributor to the temperature uncertainty.


2013 ◽  
Vol 26 (24) ◽  
pp. 10205-10217 ◽  
Author(s):  
Lei Wang ◽  
Paul J. Kushner ◽  
Darryn W. Waugh

Abstract The Southern Hemisphere (SH) stratospheric stationary wave amplitude increased significantly in late spring and early summer during the last two decades of the twentieth century. A suite of chemistry climate model simulations are examined to explore the underlying cause and the separate effects of anthropogenic forcing from ozone depleting substances (ODSs) and greenhouse gases (GHGs) in the past and projected SH stationary wave evolution. The model simulations produce trends in the wave amplitude similar to that observed, although somewhat weaker. In simulations with changing ODSs, this increase in amplitude is reproduced during the ozone depletion period and is reversed during the ozone recovery period. This response is related to changes in the strength and timing of the breakdown of the SH polar vortex associated with ozone depletion and recovery. GHG increases have little impact on the simulated stratospheric stationary wave amplitude but are projected to induce an eastward phase shift of the waves. This phase shift is linked to the strengthening of the subtropical jets driven by GHG forcing via sea surface warming.


2020 ◽  
Vol 33 (15) ◽  
pp. 6583-6598
Author(s):  
Jianglin Wang ◽  
Bao Yang ◽  
Fredrik Charpentier Ljungqvist

AbstractAccurate projections of moisture variability across the Tibetan Plateau (TP) are crucial for managing regional water resources, ecosystems, and agriculture in densely populated downstream regions. Our understanding of how moisture conditions respond to increasing temperatures over the TP is still limited, due to the short length of instrumental data and the limited spatial coverage of high-resolution paleoclimate proxy records in this region. This study presents a new, early-summer (May–June) self-calibrating Palmer drought severity index (scPDSI) reconstruction for the southeastern TP (SETP) covering 1135–2010 CE using 14 tree-ring records based on 1669 individual width sample series. The new reconstruction reveals that the SETP experienced the longest period of pluvial conditions in 1154–75 CE, and the longest droughts during the periods 1262–80 and 1958–76 CE. The scPDSI reconstruction shows stable and significant in-phase relationships with temperature at both high and low frequencies throughout the past 900 years. This supports the hypothesis that climatic warming may increase moisture by enhancing moisture recycling and convective precipitation over the SETP; it is also consistent with climate model projections of wetter conditions by the late twenty-first century in response to global warming.


2020 ◽  
Vol 33 (14) ◽  
pp. 5939-5951
Author(s):  
Albert Ossó ◽  
Rowan Sutton ◽  
Len Shaffrey ◽  
Buwen Dong

AbstractA recent study identified a relationship between North Atlantic Ocean sea surface temperature (SST) gradients in spring and a specific pattern of atmospheric circulation in the following summer: the summer east Atlantic (SEA) pattern. It was shown that the SEA pattern is closely associated with meridional shifts in the eddy-driven jet in response to anomalous SST gradients. In this study, the physical mechanisms underlying this relationship are investigated further. It is shown that the predictable SEA pattern anomalies appear in June–July and undergo substantial amplification between July and August before decaying in September. The associated SST anomalies also grow in magnitude and spatial extent from June to August. The question of why the predictable atmospheric anomalies should occur in summer is addressed, and three factors are identified. The first is the climatological position of the storm track, which migrates poleward from spring to summer. The second is that the magnitude of interannual SST variability underlying the storm track peaks in summer, both in absolute terms, and relative to the underlying mean SST gradient. The third factor is the most interesting. We identify a positive coupled ocean–atmosphere feedback, which operates in summer and leads to the amplification of both SST and atmospheric circulation anomalies. The extent to which the identified processes are captured in the HadGEM3-GC2 climate model is also assessed. The model is able to capture the relationship between spring North Atlantic SSTs and subsequent ocean–atmosphere conditions in early summer, but the relationship is too weak. The results suggest that the real world might be more predictable than is inferred from the models.


2020 ◽  
Vol 14 (12) ◽  
pp. 4279-4297
Author(s):  
Ingmar Nitze ◽  
Sarah W. Cooley ◽  
Claude R. Duguay ◽  
Benjamin M. Jones ◽  
Guido Grosse

Abstract. Northwestern Alaska has been highly affected by changing climatic patterns with new temperature and precipitation maxima over the recent years. In particular, the Baldwin and northern Seward peninsulas are characterized by an abundance of thermokarst lakes that are highly dynamic and prone to lake drainage like many other regions at the southern margins of continuous permafrost. We used Sentinel-1 synthetic aperture radar (SAR) and Planet CubeSat optical remote sensing data to analyze recently observed widespread lake drainage. We then used synoptic weather data, climate model outputs and lake ice growth simulations to analyze potential drivers and future pathways of lake drainage in this region. Following the warmest and wettest winter on record in 2017/2018, 192 lakes were identified as having completely or partially drained by early summer 2018, which exceeded the average drainage rate by a factor of ∼ 10 and doubled the rates of the previous extreme lake drainage years of 2005 and 2006. The combination of abundant rain- and snowfall and extremely warm mean annual air temperatures (MAATs), close to 0 ∘C, may have led to the destabilization of permafrost around the lake margins. Rapid snow melt and high amounts of excess meltwater further promoted rapid lateral breaching at lake shores and consequently sudden drainage of some of the largest lakes of the study region that have likely persisted for millennia. We hypothesize that permafrost destabilization and lake drainage will accelerate and become the dominant drivers of landscape change in this region. Recent MAATs are already within the range of the predictions by the University of Alaska Fairbanks' Scenarios Network for Alaska and Arctic Planning (UAF SNAP) ensemble climate predictions in scenario RCP6.0 for 2100. With MAAT in 2019 just below 0 ∘C at the nearby Kotzebue, Alaska, climate station, permafrost aggradation in drained lake basins will become less likely after drainage, strongly decreasing the potential for freeze-locking carbon sequestered in lake sediments, signifying a prominent regime shift in ice-rich permafrost lowland regions.


Sign in / Sign up

Export Citation Format

Share Document