Tuning the surface properties of hydrogel at the nanoscale with focused ion irradiation

Soft Matter ◽  
2014 ◽  
Vol 10 (42) ◽  
pp. 8448-8456 ◽  
Author(s):  
Y. Kim ◽  
A. Y. Abuelfilat ◽  
S. P. Hoo ◽  
A. Al-Abboodi ◽  
B. Liu ◽  
...  

With the site-specific machining capability of Focused Ion Beam (FIB) irradiation, we aim to tailor the surface morphology and physical attributes of biocompatible hydrogel at the nano/micro scale particularly for tissue engineering and other biomedical studies.

1999 ◽  
Vol 5 (S2) ◽  
pp. 914-915
Author(s):  
T. Kamino ◽  
T. Yaguchi ◽  
H. Matsumoto ◽  
H. Kobayashi ◽  
H. Koike

A method for site specific characterization of the materials using a dedicated focused ion beam(FIB) system and an analytical transmission electron microscope (TEM) was developed. Needless to say, in TEM specimen preparation using FIB system, stability of a specimen is quite important. The specimen stage employed in the developed FIB system is the one designed for high resolution TEM, and the specimen drift rate of the stage is less than lnm/min. In addition, FIB-TEM compatible specimen holder which allows milling of a specimen with the FIB system and observation of the specimen with the TEM without re-loading was developed. To obtain thin specimen from the area to be characterized correctly, confirmation of the area before final milling is needed. However, observation of cross sectional view in a FIB system is recommended because it causes damage by Ga ion irradiation. To solve this problem, we used a STEM unit as a viewer of FIB milled specimen.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Chuan Zhang ◽  
Jane Y. Li ◽  
John Aguada ◽  
Howard Marks

Abstract This paper introduces a novel sample preparation method using plasma focused ion-beam (pFIB) milling at low grazing angle. Efficient and high precision preparation of site-specific cross-sectional samples with minimal alternation of device parameters can be achieved with this method. It offers the capability of acquiring a range of electrical characteristic signals from specific sites on the cross-section of devices, including imaging of junctions, Fins in the FinFETs and electrical probing of interconnect metal traces.


Author(s):  
Roger Alvis ◽  
Jeff Blackwood ◽  
Sang-Hoon Lee ◽  
Matthew Bray

Abstract Semiconductor devices with critical dimensions less than 20nm are now being manufactured in volume. A challenge facing the failure analysis and process-monitoring community is two-fold. The first challenge of TEM sample prep of such small devices is that the basic need to end-point on a feature-of-interest pushes the imaging limit of the instrument being used to prepare the lamella. The second challenge posed by advanced devices is to prepare an artifact-free lamella from non-planar devices such as finFETs as well as from structures incorporating ‘non-traditional’ materials. These challenges are presently overcome in many advanced logic and memory devices in the focused ion beam-based TEM sample preparation processes by inverting the specimen prior to thinning to electron transparency. This paper reports a highthroughput method for the routine preparation of artifact-free TEM lamella of 20nm thickness, or less.


JOM ◽  
2021 ◽  
Author(s):  
Alexander J. Leide ◽  
Richard I. Todd ◽  
David E. J. Armstrong

AbstractSilicon carbide is desirable for many nuclear applications, making it necessary to understand how it deforms after irradiation. Ion implantation combined with nanoindentation is commonly used to measure radiation-induced changes to mechanical properties; hardness and modulus can be calculated from load–displacement curves, and fracture toughness can be estimated from surface crack lengths. Further insight into indentation deformation and fracture is required to understand the observed changes to mechanical properties caused by irradiation. This paper investigates indentation deformation using high-resolution electron backscatter diffraction (HR-EBSD) and Raman spectroscopy. Significant differences exist after irradiation: fracture is suppressed by swelling-induced compressive residual stresses, and the plastically deformed region extends further from the indentation. During focused ion beam cross-sectioning, indentation cracks grow, and residual stresses are modified. The results clarify the mechanisms responsible for the modification of apparent hardness and apparent indentation toughness values caused by the compressive residual stresses in ion-implanted specimens.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2268
Author(s):  
Hongying Sun ◽  
Penghui Lei ◽  
Guang Ran ◽  
Hui Wang ◽  
Jiyun Zheng ◽  
...  

As leading candidates of sheet steels for advanced nuclear reactors, three types of Ni–Mo–Cr high-strength low alloy (HSLA) steels named as CNST1, CNST2 and CNSS3 were irradiated by 400 keV Fe+ with peak fluence to 1.4 × 1014, 3.5 × 1014 and 7.0 × 1014 ions/cm2, respectively. The distribution and morphology of the defects induced by the sample preparation method and Fe+ irradiation dose were investigated by transmission electron microscopy (TEM) and positron-annihilation spectroscopy (PAS). TEM samples were prepared with two methods, i.e., a focused ion beam (FIB) technique and the electroplating and twin-jet electropolishing (ETE) method. Point defects and dislocation loops were observed in CNST1, CNST2 and CNSS3 samples prepared via FIB. On the other hand, samples prepared via the ETE method revealed that a smaller number of defects was observed in CNST1, CNST2 and almost no defects were observed in CNST3. It is indicated that artifact defects could be introduced by FIB preparation. The PAS S-W plots showed that the existence of two types of defects after ion implantation included small-scale defects such as vacancies, vacancy clusters, dislocation loops and large-sized defects. The S parameter of irradiated steels showed a clear saturation in PAS response with increasing Fe+ dose. At the same irradiation dose, higher values of the S-parameter were achieved in CNST1 and CNST2 samples when compared to that in CNSS3 samples. The mechanism and evolution behavior of irradiation-induced defects were analyzed and discussed.


2015 ◽  
Vol 665 ◽  
pp. 169-172
Author(s):  
Yoshimasa Takahashi ◽  
Hikaru Kondo ◽  
Kazuya Aihara ◽  
Masanori Takuma ◽  
Kenichi Saitoh ◽  
...  

The strength against interfacial fracture initiation from a free-edge of Si/Cu micro-components was evaluated. The micro-scale cantilever specimens containing dissimilar interfaces were fabricated with a focused-ion-beam (FIB) technique, and they were loaded with a quantitative nanoindenter holder operated in a transmission electron microscope (TEM). The specimens were successfully fractured along the Si/Cu interface, and the critical loads at fracture were measured. The critical stress distribution near the free-edge was evaluated with the finite element method (FEM). The near-edge stress distributions of 90°/90°-shaped specimens were scattered while those of 135°/135°-shaped specimens were in good agreement despite the difference in specimen dimensions. Such a difference was discussed in terms of the relation between the magnitude of stress singularity and the microstructures of material.


2013 ◽  
Vol 19 (4) ◽  
pp. 1080-1091 ◽  
Author(s):  
Felipe Rivera ◽  
Robert Davis ◽  
Richard Vanfleet

AbstractTransmission electron microscopy (TEM) and focused ion beam (FIB) are proven tools to produce site-specific samples in which to study devices from initial processing to causes for failure, as well as investigating the quality, defects, interface layers, etc. However, the use of polymer substrates presents new challenges, in the preparation of suitable site-specific TEM samples, which include sample warping, heating, charging, and melting. In addition to current options that address some of these problems such as cryo FIB, we add an alternative method and FIB sample geometry that address these challenges and produce viable samples suitable for TEM elemental analysis. The key feature to this approach is a larger than usual lift-out block into which small viewing windows are thinned. Significant largely unthinned regions of the block are left between and at the base of the thinned windows. These large unthinned regions supply structural support and thermal reservoirs during the thinning process. As proof-of-concept of this sample preparation method, we also present TEM elemental analysis of various thin metallic films deposited on patterned polycarbonate, lacquer, and poly-di-methyl-siloxane substrates where the pattern (from low- to high-aspect ratio) is preserved.


Author(s):  
Woo Jun Kwon ◽  
Jisu Ryu ◽  
Christopher H. Kang ◽  
Michael B. Schmidt ◽  
Nicholas Croy

Abstract Focused ion beam (FIB) microscopy is an essential technique for the site-specific sample preparation of atom probe tomography (APT). The site specific APT and automated APT sample preparation by FIB have allowed increased APT sample volume. In the workflow of APT sampling, it is very critical to control depth of the sample where exact region of interest (ROI) for accurate APT analysis. Very precise depth control is required at low kV cleaning process in order to remove the damaged layer by previous high kV FIB process steps. We found low kV cleaning process with 5 kV and followed by 2kV beam conditions delivers better control to reached exact ROI on Z direction. This understanding is key to make APT sample with fully automated fashion.


Author(s):  
Jing Fu ◽  
Sanjay B. Joshi

Recently, Focused Ion Beam (FIB) instruments have begun be applied to organic materials such as polymers and biological systems. This provides a novel tool for sectioning biological samples for analysis, or microfabrication with environment friendly materials. The modeling of nano/micro scale geometry accurately sculptured by FIB milling is crucial for generating the milling plan and process control, and for computer simulation for prediction and visualization of the milled geometry. However, modeling of the ion milling process on compound materials, especially for high aspect ratio feature, is still difficult due to the complexity of target material, as well as multiple physical and chemical interactions involved. In this study, a comprehensive model of ion milling with organic targets is presented to address the challenges using a simulation based approach. This platform has also been validated by milling different features on water ice in a cryogenic environment, and the simulation and experiment results show great consistency. With the proliferation of nanotechnology to biomedical and biomaterial domains, the proposed approach is expected to be a flexible tool for various applications involving novel and heterogeneous milling targets.


Sign in / Sign up

Export Citation Format

Share Document