scholarly journals Engineering the immune system

2018 ◽  
Vol 40 (1) ◽  
pp. 24-27
Author(s):  
Kaitlyn Sadtler

From ancient Greece via 19th century France, through to the present day, the development of our knowledge of the immune system has grown exponentially. This complex network of cells and secreted proteins is present in almost every organ of the human body. Our immune systems play intricate roles in both homeostasis and disease, regulating processes from bacterial infection to tissue development. The idea of engineering the immune system has been around for over 100 years. In 1880, Louis Pasteur first presented his findings on vaccination to the public, and by 1885 he had immunized the first child against the rabies virus. In the 1890s, William Coley described the deliberate infection of cancer patients with streptococcus bacteria, which led to a reduction in tumour burden, and has been described as the first cancer immunotherapy. Jumping forward to the present day, we have begun modulating immune responses through the use of nanoparticles, biomaterial scaffolds and small molecule drugs. These approaches to engineer immune responses can be used in a variety of applications from disease prevention to tissue regeneration.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tian-Yu Lei ◽  
Ying-Ze Ye ◽  
Xi-Qun Zhu ◽  
Daniel Smerin ◽  
Li-Juan Gu ◽  
...  

AbstractThrough considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


2021 ◽  
Vol 34 (01) ◽  
pp. 003-016
Author(s):  
John Michel Warner

AbstractAccording to Hahnemann, homoeopathic medicines must be great immune responses inducers. In crude states, these medicines pose severe threats to the immune system. So, the immune-system of an organism backfires against the molecules of the medicinal substances. The complex immune response mechanism activated by the medicinal molecules can handle any threats which are similar to the threats posed by the medicinal molecules. The intersectional operation of the two sets, medicine-induced immune responses and immune responses necessary to cure diseases, shows that any effective homoeopathic medicine, which is effective against any disease, can induce immune responses which are necessary to cure the specific disease. In this article, this mechanism has been exemplified by the action of Silicea in human body. Also, a neuroimmunological assessment of the route of medicine administration shows that the oral cavity and the nasal cavity are two administration-routes where the smallest doses (sometimes even few molecules) of a particular homoeopathic medicine induce the most effective and sufficient (in amount) purgatory immune responses. Administering the smallest unitary doses of Silicea in the oral route can make significant changes in the vital force line on the dose–response relationship graph. The dose–response relationship graph further implicates that the most effective dose of a medicine must be below the lethality threshold. If multiple doses of any medicine are administered at same intervals, the immune-system primarily engages with the medicinal molecules; but along the passage of time, the engagement line splits into two: one engages with the medicinal molecules and another engages with diseases. The immune system's engagement with the diseases increases along the passage of time, though the engagement with the medicinal molecules gradually falls with the administration of descending doses. Necessarily, I have shown through mathematical logic that the descending doses, though they seem to be funny, can effectively induce the most effective immune responses.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 136
Author(s):  
Masahiko Terauchi ◽  
Atsushi Tamura ◽  
Yoshinori Arisaka ◽  
Hiroki Masuda ◽  
Tetsuya Yoda ◽  
...  

Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Alexander P. Hynes ◽  
Simon J. Labrie ◽  
Sylvain Moineau

ABSTRACT The adaptive immune system of prokaryotes, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes), results in specific cleavage of invading nucleic acid sequences recognized by the cell’s “memory” of past encounters. Here, we exploited the properties of native CRISPR-Cas systems to program the natural “memorization” process, efficiently generating immunity not only to a bacteriophage or plasmid but to any specifically chosen DNA sequence. IMPORTANCE CRISPR-Cas systems have entered the public consciousness as genome editing tools due to their readily programmable nature. In industrial settings, natural CRISPR-Cas immunity is already exploited to generate strains resistant to potentially disruptive viruses. However, the natural process by which bacteria acquire new target specificities (adaptation) is difficult to study and manipulate. The target against which immunity is conferred is selected stochastically. By biasing the immunization process, we offer a means to generate customized immunity, as well as provide a new tool to study adaptation.


2021 ◽  
Vol 22 (15) ◽  
pp. 8037
Author(s):  
Akshita Chauhan ◽  
Tabassum Khan ◽  
Abdelwahab Omri

The aim of cancer immunotherapy is to reactivate autoimmune responses to combat cancer cells. To stimulate the immune system, immunomodulators, such as adjuvants, cytokines, vaccines, and checkpoint inhibitors, are extensively designed and studied. Immunomodulators have several drawbacks, such as drug instability, limited half-life, rapid drug clearance, and uncontrolled immune responses when used directly in cancer immunotherapy. Several strategies have been used to overcome these limitations. A simple and effective approach is the loading of immunomodulators onto gold-based nanoparticles (GNPs). As gold is highly biocompatible, GNPs can be administered intravenously, which aids in increasing cancer cell permeability and retention time. Various gold nanoplatforms, including nanospheres, nanoshells, nanorods, nanocages, and nanostars have been effectively used in cancer immunotherapy. Gold nanostars (GNS) are one of the most promising GNP platforms because of their unusual star-shaped geometry, which significantly increases light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. As a result, GNPs are a useful vehicle for delivering antigens and adjuvants that support the immune system in killing tumor cells by facilitating or activating cytotoxic T lymphocytes. This review represents recent progress in encapsulating immunomodulators into GNPs for utility in a cancer immunotherapeutic regimen.


2021 ◽  
Vol 22 ◽  
Author(s):  
Jizong Jiang

Abstract: Vaccination with small antigens, such as proteins, peptides, or nucleic acids, is used to activate the immune system and trigger the protective immune responses against a pathogen. Currently, nanovaccines are undergoing development instead of conventional vaccines. The size of nanovaccines is in the range of 10–500 nm, which enables them to be readily taken up by cells and exhibit improved safety profiles. However, low-level immune responses, as the removal of redundant pathogens, trigger counter-effective activation of the immune system invalidly and present a challenging obstacle to antigen recognition and its uptake via antigen-presenting cells (APCs). In addition, toxicity can be substantial. To overcome these problems, a variety of cell-penetrating peptide (CPP)-mediated vaccine delivery systems based on nanotechnology have been proposed, most of which are designed to improve the stability of antigens in vivo and their delivery into immune cells. CPPs are particularly attractive components of antigen delivery. Thus, the unique translocation property of CPPs ensures that they remain an attractive carrier with the capacity to deliver cargo in an efficient manner for the application of drugs, gene transfer, protein, and DNA/RNA vaccination delivery. CPP-mediated nanovaccines can enhance antigen uptake, processing, and presentation by APCs, which are the fundamental steps in initiating an immune response. This review describes the different types of CPP-based nanovaccines delivery strategies.


Author(s):  
John Gastil ◽  
Laura Black

The discipline of communication encompasses a broad spectrum of humanistic, interpretive, and social scientific approaches to studying public deliberation. Early work engaged Habermasian theories of the public sphere, and rhetorical scholarship has foregrounded the deliberative threads running back to the discipline’s earliest history in ancient Greece. The bulk of contemporary work, however, has examined the dynamics of deliberation, particularly in the context of face-to-face discussions and dialogues in small groups. These studies have revealed the importance of narrative and dialogic exchanges during deliberation, as well as the critical role of facilitation and the maintenance of deliberative norms. Research has also assessed the practical consequences of participating in deliberation. The discipline’s practical orientation has led some scholars to seek ways to optimize deliberative designs to maximize simultaneously the quality of their decision outputs and their civic impacts on participants.


2020 ◽  
Vol 2 (1) ◽  
pp. 50
Author(s):  
Dwi Martha Nur Aditya

Abstract— A few months ago there was Covid-19 virus outbreak by SARS-CoV-19 virus which has clinical manifestations, one of which is Anosmia. Anosmia cause patient was experienced smell’s decreasing which causes psychological problems that loss of comfort and appetite. This condition may also cause imunity’s decreasing in patient. Anosmia in Covid-19 patients could be temporary, if the body's immune system is maintained in good condition, one of the factors is continuing provide healthy and nutritious food intake, even though in tasteless conditions. Therefore, this article can be used as an educational material for the public, how to understand the neurobiological conditions of anosmia in Covid-19, further to avoid depressed due to loss of taste which could be lead to loss appetite. Keywords: Covid-19, Anosmia, Neurobiology Abstrak— Beberapa bulan lalu telah terjadi penyebaran wabah virus Covid-19 oleh SARS-CoV-19 virus yang memiliki manifestasi klinis salah satunya adalah Anosmia. Kondisi anosmia menyebabkan kondisi pasien mengalami penurunan daya penciuman yang menyebabkan gangguan psikologis berupa kehilangan rasa nyaman dan kehilangan napsu makan. Kondisi ini sudah barang tentu akan menyebabkan penurunan daya imunitas pasien. Anosmia pada pasien Covid-19 bersifat sementara, apabila daya imunitas tubuh tetap dijaga dalam keadaan baik, salah satu faktornya adalah tetap memberikan asupan makan sehat dan bergizi, meskipun dalam kondisi tasteless. Oleh karena itu, dengan adanya artikel ini dapat digunakan sebagai bahan edukasi kepada khalayak, bagaimana memahami kondisi anosmia pada Covid-19 secara neurobiologi, sehingga dapat menghindarkan rasa depresi karena kehilangan rasa akan makaman yang dapat menyebabkan turunnya napsu makan. Kata kunci: Covid-19, Anosmia, Neurobiologi


2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Ragnhild Inderberg Vestrum ◽  
Torunn Forberg ◽  
Birgit Luef ◽  
Ingrid Bakke ◽  
Per Winge ◽  
...  

The roles of host-associated bacteria have gained attention lately, and we now recognise that the microbiota is essential in processes such as digestion, development of the immune system and gut function. In this study, Atlantic cod larvae were reared under germ-free, gnotobiotic and conventional conditions. Water and fish microbiota were characterised by 16S rRNA gene analyses. The cod larvae’s transcriptional responses to the different microbial conditions were analysed by a custom Agilent 44 k oligo microarray. Gut development was assessed by transmission electron microscopy (TEM). Water and fish microbiota differed significantly in the conventional treatment and were dominated by different fast-growing bacteria. Our study indicates that components of the innate immune system of cod larvae are downregulated by the presence of non-pathogenic bacteria, and thus may be turned on by default in the early larval stages. We see indications of decreased nutrient uptake in the absence of bacteria. The bacteria also influence the gut morphology, reflected in shorter microvilli with higher density in the conventional larvae than in the germ-free larvae. The fact that the microbiota alters innate immune responses and gut morphology demonstrates its important role in marine larval development.


2020 ◽  
Author(s):  
Shouyong Ju ◽  
Hanqiao Chen ◽  
Shaoying Wang ◽  
Jian Lin ◽  
Raffi V Aroian ◽  
...  

AbstractPathogen recognition and triggering pattern of host innate immune system is critical to understanding pathogen-host interaction. It is generally accepted that the microbial infection can be recognized by host via pattern-triggered immunity (PTI) or effector-triggered immunity (ETI) responses. Recently, non-PRR-mediated cellular surveillance systems have been reported as an important supplement strategy to PTI and ETI responses. However, the mechanism of how surveillance systems sense pathogens and trigger innate immune responses is largely unknown. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found a new approach for surveillance systems to sense the pathogens through no-PPRs patterns. We reported C. elegans can monitor intracellular energy status through the mitochondrial surveillance system to triggered innate immune responses against pathogenic attack via AMP-activated protein kinase (AMPK). Consider that the mitochondria surveillance systems and AMPK are conserved components from worms to mammals, our study suggests that disrupting mitochondrial homeostasis to activate the immune system through AMPK-dependent pathways may widely existing in animals.


Sign in / Sign up

Export Citation Format

Share Document