Identification and function of long non-coding RNAs

2013 ◽  
Vol 54 ◽  
pp. 113-126 ◽  
Author(s):  
Robert S. Young ◽  
Chris P. Ponting

It is now clear that eukaryotic cells produce many thousands of non-coding RNAs. The least well-studied of these are longer than 200 nt and are known as lncRNAs (long non-coding RNAs). These loci are of particular interest as their biological relevance remains uncertain. Sequencing projects have identified thousands of these loci in a variety of species, from flies to humans. Genome-wide scans for functionality, such as evolutionary and expression analyses, suggest that many of these molecules have functional roles to play in the cell. Nevertheless, only a handful of lncRNAs have been experimentally investigated, and most of these appear to possess roles in regulating gene expression at a variety of different levels. Several lncRNAs have also been implicated in cancer. This evidence suggests that lncRNAs represent a new class of non-coding gene whose importance should become clearer upon further experimental investigation.

Author(s):  
Marine Lambert ◽  
Abderrahim Benmoussa ◽  
Patrick Provost

The advent of RNA-sequencing (RNA-Seq) technologies has markedly improved our knowledge and expanded the compendium of small non-coding RNAs, most of which derive from the processing of longer RNA precursors. In this review article, we will discuss about the biogenesis and function of small non-coding RNAs derived from eukaryotic ribosomal RNA (rRNA), called rRNA fragments (rRFs), and their potential role(s) as regulator of gene expression. This relatively new class of ncRNAs remained poorly investigated and underappreciated until recently, due mainly to the a priori exclusion of rRNA sequences—because of their overabundance—from RNA-Seq datasets. The situation surrounding rRFs resembles that of microRNAs (miRNAs), which used to be readily discarded from further analyses, for more than five decades, because we could not believe that RNA of such a short length could bear biological significance. As if we had not yet learned our lesson not to restrain our investigative, scientific mind from challenging widely accepted beliefs or dogmas, and from looking for the hidden treasures in the most unexpected places.


Author(s):  
Suresh Kumar

Genome-wide epigenetic changes in plants are being reported during the development and environmental stresses, which are often correlated with gene expression at the transcriptional level. Sum total of the biochemical changes in nuclear DNA, post-translational modifications in histone proteins and variations in the biogenesis of non-coding RNAs in a cell is known as epigenome. These changes are often responsible for variation in expression of the gene without any change in the underlying nucleotide sequence. The changes might also cause variation in chromatin structure resulting into the changes in function/activity of the genome. The epigenomic changes are dynamic with respect to the endogenous and/or environmental stimuli which affect phenotypic plasticity of the organism. Both, the epigenetic changes and variation in gene expression might return to the pre-stress state soon after withdrawal of the stress. However, a part of the epigenetic changes may be retained which is reported to play role in acclimatization, adaptation as well as in the evolutionary processes. Understanding epigenome-engineering for improved stress tolerance in plants has become essential for better utilization of the genetic factors. This review delineates the importance of epigenomics towards possible improvement of plant’s responses to environmental stresses for climate resilient agriculture.


2021 ◽  
Author(s):  
Juan Manuel Crescente ◽  
Diego Zavallo ◽  
Mariana del Vas ◽  
Sebastian Asurmendi ◽  
Marcelo Helguera ◽  
...  

Abstract Plant microRNAs (miRNAs) are a class of small non-coding RNAs that are 20–24 nucleotides length and can repress gene expression at post-transcriptional levels by target degradation or translational repression. There is increasing evidence that some microRNAs can be derived from a group of non-autonomous class II transposable elements called Miniature Inverted-repeat Transposable Elements (MITEs) in plants. We used public small RNA, degradome libraries and the common wheat (Triticum aestivum) genome to screen miRNAs production and target sites. We also created a comprehensive wheat MITE database using known and identifying novel elements. We found high homology between MITEs and 14% of all the miRNAs production sites in wheat. Furthermore, we show that MITE-derived miRNAs have preference for target degradation sites with MITE insertions in 3' UTR regions in wheat.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Si-ying Zhou ◽  
Wei Chen ◽  
Su-jin Yang ◽  
Zi-han Xu ◽  
Jia-hua Hu ◽  
...  

AbstractBreast cancer (BCa) is one of the most frequently diagnosed cancers and leading cause of cancer deaths among females worldwide. Circular RNAs (circRNAs) are a new class of endogenous regulatory RNAs characterized by circular shape resulting from covalently closed continuous loops that are capable of regulating gene expression at transcription or post-transcription levels. With the unique structures, circRNAs are resistant to exonuclease RNase R and maintain stability more easily than linear RNAs. Recently, an increasing number of circRNAs are discovered and reported to show different expression in BCa and these dysregulated circRNAs were correlated with patients’ clinical characteristics and grade in the progression of BCa. CircRNAs participate in the bioprocesses of carcinogenesis of BCa, including cell proliferation, apoptosis, cell cycle, tumorigenesis, vascularization, cell invasion, migration as well as metastasis. Here we concentrated on biogenesis and function of circRNAs, summarized their implications in BCa and discussed their potential as diagnostic and therapeutic targets for BCa.


2015 ◽  
Vol 20 (2) ◽  
Author(s):  
Dan Qin ◽  
Cunshuan Xu

AbstractLong non-coding RNAs (lncRNAs) have attracted considerable attention recently due to their involvement in numerous key cellular processes and in the development of various disorders. New high-throughput methods enable their study on a genome-wide scale. Numerous lncRNAs have been identified and characterized as important members of the biological regulatory network, with significant roles in regulating gene expression at the epigenetic, transcriptional and post-transcriptional levels. This paper summarizes the diverse mechanisms of action of these lncRNAs and looks at the study strategies in this field. A major challenge in future study is to establish more effective bioinformatics and experimental methods to explore the functions, detailed mechanisms of action and structures deciding the functional diversity of lncRNAs, since the vast majority remain unresolved.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Emmanuel Odame ◽  
Yuan Chen ◽  
Shuailong Zheng ◽  
Dinghui Dai ◽  
Bismark Kyei ◽  
...  

AbstractmiRNAs are well known to be gene repressors. A newly identified class of miRNAs termed nuclear activating miRNAs (NamiRNAs), transcribed from miRNA loci that exhibit enhancer features, promote gene expression via binding to the promoter and enhancer marker regions of the target genes. Meanwhile, activated enhancers produce endogenous non-coding RNAs (named enhancer RNAs, eRNAs) to activate gene expression. During chromatin looping, transcribed eRNAs interact with NamiRNAs through enhancer-promoter interaction to perform similar functions. Here, we review the functional differences and similarities between eRNAs and NamiRNAs in myogenesis and disease. We also propose models demonstrating their mutual mechanism and function. We conclude that eRNAs are active molecules, transcriptional regulators, and partners of NamiRNAs, rather than mere RNAs produced during enhancer activation.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Kimberly A. Carlson ◽  
Kylee Gardner ◽  
Anjeza Pashaj ◽  
Darby J. Carlson ◽  
Fang Yu ◽  
...  

Aging is a complex process characterized by a steady decline in an organism’s ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Paz Nombela ◽  
Borja Miguel-López ◽  
Sandra Blanco

AbstractRNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programmes. Significant advances have been made in understanding the functional role of RNA modifications in regulating coding and non-coding RNA processing and function, which in turn thoroughly shape distinct gene expression programmes. They affect diverse biological processes, and the correct deposition of many of these modifications is required for normal development. Alterations of their deposition are implicated in several diseases, including cancer. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in coding and non-coding RNAs and describe their physiopathological role in cancer. We will highlight the latest insights into the mechanisms of how these posttranscriptional modifications influence tumour development, maintenance, and progression. Finally, we will summarize the latest advances on the development of small molecule inhibitors that target specific writers or erasers to rewind the epitranscriptome of a cancer cell and their therapeutic potential.


Author(s):  
Thomas Griebel ◽  
Dmitry Lapin ◽  
Barbara Kracher ◽  
Lorenzo Concia ◽  
Moussa Benhamed ◽  
...  

AbstractTimely and specific regulation of gene expression is critical for plant responses to environmental and developmental cues. Transcriptional coregulators have emerged as important factors in gene expression control, although they lack DNA-binding domains and the mechanisms by which they are recruited to and function at the chromatin are poorly understood. Plant Topless-related 1 (TPR1), belonging to a family of transcriptional corepressors found across eukaryotes, contributes to immunity signaling in Arabidopsis thaliana and wild tobacco. We performed chromatin immunoprecipitation and sequencing (ChIP-seq) on an Arabidopsis TPR1-GFP expressing transgenic line to characterize genome-wide TPR1-chromatin associations. The analysis revealed ∼1400 genes bound by TPR1, with the majority of binding sites located at gene upstream regions. Among the TPR1 bound genes, we find not only regulators of immunity but also genes controlling growth and development. To support further analysis of TPR1-chromatin complexes and other transcriptional corepressors in plants, we provide two ways to access the processed ChIP-seq data and enable their broader use by the research community.


2017 ◽  
Author(s):  
Steven P. Barrett ◽  
Kevin R. Parker ◽  
Caroline Horn ◽  
Miguel Mata ◽  
Julia Salzman

AbstractciRS-7 is an intensely studied, highly expressed and conserved circRNA. Essentially nothing is known about its biogenesis, including the location of its promoter. A prevailing assumption has been that ciRS-7 is an exceptional circRNA because it is transcribed from a locus lacking any mature linear RNA transcripts of the same sense. Our interest in the biogenesis of ciRS-7 led us to develop an algorithm to define its promoter. This approach predicted that the human ciRS-7 promoter coincides with that of the long non-coding RNA, LINC00632. We validated this prediction using multiple orthogonal experimental assays. We also used computational approaches and experimental validation to establish that ciRS-7 exonic sequence is embedded in linear transcripts that are flanked by cryptic exons in both human and mouse. Together, this experimental and computational evidence generate a new view of regulation in this locus: (a) ciRS-7 is like other circRNAs, as it is spliced into linear transcripts; (b) expression of ciRS-7 is primarily determined by the chromatin state of LINC00632 promoters; (c) transcription and splicing factors sufficient for ciRS-7 biogenesis are expressed in cells that lack detectable ciRS-7 expression. These findings have significant implications for the study of the regulation and function of ciRS-7, and the analytic framework we developed to jointly analyze RNA-seq and ChlP-seq data reveal the potential for genome-wide discovery of important biological regulation missed in current reference annotations.Author SummarycircRNAs were recently discovered to be a significant product of ‘host’ gene expression programs but little is known about their transcriptional regulation. Here, we have studied the expression of a well-known circRNA named ciRS-7. ciRS-7 has an unusual function for a circRNA; it is believed to be a miRNA sponge. Previously, ciRS-7 was thought to be transcribed from a locus lacking any mature linear isoforms, unlike all other circular RNAs known to be expressed in human cells. However, we have found this to be false; using a combination of bioinformatic and experimental genetic approaches, in both human and mouse, we discovered that linear transcripts containing the ciRS-7 exonic sequence, linking it to upstream genes. This suggests the potential for additional functional roles of this important locus and provides critical information to begin study on the biogenesis of ciRS-7.


Sign in / Sign up

Export Citation Format

Share Document