Methylation status of oestrogen receptor α-A: a predictor of prognosis in leukaemias

2010 ◽  
Vol 30 (4) ◽  
pp. 217-222 ◽  
Author(s):  
Jie Yao ◽  
Xiao-Bing Zhang ◽  
Xiao-li Zhang ◽  
Wei-Ling Fu

Many studies have shown that epigenetic regulation of ERs (oestrogen receptors) plays a key role in the pathogenesis of leukaemia. In the present study, it was found that the methylated status of ERα-A might serve as an epigenetic biomarker of leukaemias. In this study, the protein expression and cell apoptosis, cycle, proliferation and viability with and without 5-aza-dC (5-aza-2′-deoxycytidine) were evaluated with Western blotting, 3H-TdR (3H-thymidine) incorporation, propidium iodide staining and Trypan Blue staining respectively. The protein expression of ERα was significantly enhanced in all leukaemic cell lines using treatment with the DNA demethylation reagent 5-aza-dC. However, no obvious change in the protein expression of ERβ takes place with 5-aza-dC. And with 5-aza-dC, cell apoptosis, cell cycle, cell proliferation and viability were all inhibited significantly. We also tracked 40 cases of leukaemias with ERα-A methylation (95%; 38 of 40) to observe the prognosis 1 year after chemotherapy treatment. The patients with ERα-A methylation have no obvious symptomatic relief; however, two patients without ERα-A methylation have obtained effective relief. This result suggested that ERα plays a significant role in leukaemogenesis, and the methylated status of ERα-A not only might serve as an epigenetic biomarker of leukaemias for diagnosis, but also has the potential to serve as a predictor of prognosis in leukaemias.

2021 ◽  
Author(s):  
Zhen Huang ◽  
Mingzhu Jia ◽  
Peng Jiang ◽  
Ying Deng ◽  
Shanshan Ding ◽  
...  

Abstract We aim to investigate the methylation status, protein expression and clinical significance of the steroidogenic factor-1(SF-1) in endometrial carcinoma (EC), and explore the effect of abnormal methylation of SF-1 on the biological behaviour of EC. Bisulfite sequencing (BSP), western blotting (WB), and immunohistochemical were used to detect the methylation status and protein expression of SF-1 in EC tissues, paracancerous tissues and normal endometrial tissues. DNA methyltransferase inhibitor 5-Aza-CdR were used to treat HEC-1-A cell lines to demethylate SF-1. After treatment, WB and qPCR were used to detect the expression of SF-1 and its downstream target genes. Cell proliferation and apoptosis were detected by the EdU fluorescent labelling method and flow cytometry between the groups. Compared with paracancerous tissues and normal endometrial tissues, the expression of SF-1 protein in EC tissues was significantly increased (P﹤0.05). The percentage of methylated cytosine in the promoter region of the SF-1 gene in EC tissues (8.2%) was significantly lower than that in paracancerous tissues by 40.9% (P<0.05). Compared with the control group, after 5-Aza-CdR treatment, the methylation level of the SF-1 gene was significantly reduced (P﹤0.05), the expressions of SF-1 and its downstream target genes were significantly increased (P <0.05), the cell proliferation was enhanced and the cell apoptosis was significantly reduced (P <0.05). In conclusion, in EC, SF-1 gene was hypomethylated and the expression of SF-1 was increased, which promotes cell proliferation and inhibits cell apoptosis. SF-1 may become a new molecular target for early diagnosis and treatment in EC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The oxidative stress is an important component of the pathogenesis of PD. Artemisinin (ART) has antioxidant and neuroprotective effects. The purpose of this study is to explore the neuroprotective effect of ART on 1-methyl-4-phenyliodine iodide (MPP +)-treated SH-SY5Y cells and underlying mechanism. Methods We used MPP+-treated SH-SY5Y cells to study the neuroprotective effect of ART. Cell viability was measured by MTT assay after incubating the cells with MPP+ and/or ART for 24 h. DCFH-DA was used to detect the level of intracellular reactive oxygen species (ROS), and WST-8 was used to detect the level of superoxide dismutase (SOD). The level of intracellular reduced glutathione (GSH) was detected with 5,5΄-dithiobis-(2-nitrobenzoic acid), and the level of malondialdehyde (MDA) was assessed based on the reaction of MDA and thiobarbituric acid. A mitochondrial membrane potential detection kit (JC-1) was used to detect changes in the mitochondrial membrane potential (MMP), and an Annexin V-FITC cell apoptosis kit was used to detect cell apoptosis. The expression levels of caspase-3, cleaved caspase-3 and the autophagy-related proteins LC3, beclin-1, and p62 were detected by Western blotting. In addition, to verify the change in autophagy, we used immunofluorescence to detect the expression of LC3 and p62. Results No significant cytotoxicity was observed at ART concentrations up to 40 μM. ART could significantly increase the viability of SH-SY5Y cells treated with MPP+ and reduce oxidative stress damage and apoptosis. In addition, the Western blotting and immunofluorescence results showed that MPP+ treatment could increase the protein expression of beclin1 and LC3II/LC3I and decrease the protein expression of p62, indicating that MPP+ treatment could induce autophagy. Simultaneous treatment with ART and MPP+ could decrease the protein expression of beclin1 and LC3II/LC3I and increase the protein expression of p62, indicating that ART could decrease the level of autophagy induced by MPP+. Conclusion Our results indicate that ART has a protective effect on MPP+-treated SH-SY5Y cells by the antioxidant, antiapoptotic activities and inhibition of autophagy. Our findings may provide new hope for the prevention and treatment of PD.


2016 ◽  
Vol 11 (6) ◽  
pp. 4107-4112 ◽  
Author(s):  
YU WU ◽  
MINGDE ZHANG ◽  
XIAN ZHANG ◽  
ZHENZHOU XU ◽  
WEIGUO JIN

2021 ◽  
Author(s):  
Hua-fu Zhao ◽  
Xiu-ming Zhou ◽  
Jing Wang ◽  
Fan-fan Chen ◽  
Chang-peng Wu ◽  
...  

Abstract Background Epidermal growth factor receptor (EGFR) and lanthionine synthetase C-like 2 (LanCL2) genes locate in the same amplicon, and co-amplification of EGFR and LANCL2 is frequent in glioblastoma. However, the prognostic value of LANCL2 and EGFR co-amplification, and their mRNA and protein expression in glioblastoma remain unclear yet. Methods This study analyzed the prognostic values of the copy number variations (CNVs), mRNA and protein expression of LANCL2 and EGFR in glioblastoma specimens from TCGA database or our tumor banks. Results The amplification of LANCL2 or EGFR, and their co-amplification were frequent in glioblastoma of TCGA database and our tumor banks. CNVs of LANCL2 or EGFR were significantly correlated with IDH1/2 mutation but not MGMT promoter methylation status. LANCL2 or EGFR amplification, and their co-amplification were significantly associated with reduced overall survival (OS) of glioblastoma patients, rather than IDH1/2-wild-type glioblastoma patients. mRNA and protein overexpression of LANCL2 and EGFR was also frequently found in glioblastoma. LANCL2, rather than EGFR, was overexpressed in relapsing glioblastoma, compared with newly diagnosed glioblastoma. However, mRNA or protein expression of EGFR and LANCL2 was not significantly correlated with OS of glioblastoma patients. In addition, the intracellular localization of LanCL2, not EGFR, was associated with the grade of gliomas. Conclusions Taken together, amplification and mRNA overexpression of LANCL2 and EGFR, and their co-amplification and co-expression were frequent in glioblastoma patients. Our findings suggest that CNVs of LANCL2 and EGFR were the independent diagnostic and prognostic biomarkers for histological glioblastoma patients, but not for IDH1/2-wild-type glioblastoma patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2386-2386
Author(s):  
Jamie A.G. Hamilton ◽  
Miyoung Lee ◽  
Claire E. Pillsbury ◽  
Curtis J Henry

Abstract Background: According to the National Cancer Institute, B-cell acute lymphoblastic leukemia (B-ALL) is the most common cancer of children and adolescents (ALL, NCI, PDQ, accessed 8/2/2021). Recently, obesity has been identified as a risk factor which is associated with poor survival outcomes (Butturini et al., 2007; Eissa et al., 2017; Ethier et al., 2012) which is concerning due to the obesity rates in children and adolescents having tripled since the 1970's (Ogden et al., 2006; Ogden et al., 2020). Indeed, survival rates in obese pediatric patients with B-ALL can decline by as much as 30% relative to outcomes observed in lean patients, with obese patients more commonly presenting with treatment-related adverse events (Butturini et al., 2007; Eissa et al., 2017; Ethier et al., 2012). A hallmark of obesity is the accumulation of adipocytes, an endocrine cell type which can promote chemoresistance (Ehsanipour et al., 2013; Sheng et al., 2016; Mittelman., 2021). The mechanistic understanding of how adipocytes promote chemoresistance in B-ALL is still under investigation and further insight into this relationship could lead to the rational design of effective therapeutic strategies for obese patients with limited treatment options. Methods: A cytokine/chemokine array was performed on adipocyte and stromal cell secretomes to identify potential adipocyte-secreted inflammatory mediators, which may promote chemoresistance in human B-ALL cells. Once candidate cytokines were identified, we performed in vitro assays to measure how the addition or neutralization of proteins of interest impacted the proliferation, activation of signaling pathways, steady-state mitochondrial protein levels, and survival of human B-ALL cells in the absence or presence of chemotherapy treatment. Additionally, we mined publicly available databases to determine how protein-coding genes of interest were associated with patient survival. Furthermore, we have used the diet-induced murine model of obesity to determine how targeting candidate cytokines impact B-ALL pathogenesis. Results: We have made the novel finding that interleukin-9 (IL-9) levels are higher in adipose-rich microenvironments and activates pro-survival pathways that promote chemoresistance in human B-ALL cells. We have found that obese mice lacking IL-9 are more resistant to B-ALL development due to significant increases in survival outcomes compared to lean mice transplanted with B-ALL cells. Furthermore, we have discovered that human B-ALL cells upregulate the interleukin-9 receptors (IL-9R) when exposed to the adipocyte secretome. This potential feedback loop may increase the responsiveness of leukemia cells to local IL-9 levels. These observations were supported by our data mining results, which revealed that IL-9R gene expression levels were higher in more aggressive subtypes of B-ALL, including Ph-like B-ALL. When human B-ALL cells were treated with recombinant IL-9 (rIL-9), chemoresistance to methotrexate and doxorubicin was observed. Mechanistically, rIL-9 treatment of human B-ALL cells also downregulated the protein expression of the pro-apoptotic mitochondrial-associated protein Bim and pro-proliferative protein Raf. In all, our experiments have identified IL-9 as an adipocyte-enriched cytokine, which promotes pan-chemoresistance in human B-ALL cells. Furthermore, we have shown that this effect maybe mediated in part by suppressing the protein of expression of pro-apoptotic and proliferative proteins. Conclusions: To our knowledge, our results represent the first reports of IL-9 mediated chemoresistance in human B-ALL and the first to demonstrate that IL-9 regulates the protein homeostasis of anti- and pro-apoptotic mitochondrial proteins. In ongoing studies, we are conducting in vitro and murine studies with parental and IL-9R-deficient B-ALL cells to determine how B-ALL pathogenesis and chemosensitivity are impacted. Subsequent studies will be conducted in lean and obese mice transplanted with B-ALL cells who receive chemotherapy treatment alone or in combination with IL-9 neutralizing antibody administration. Disclosures Lee: PureTech Health: Research Funding. Henry: PureTech Health: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2513-2513
Author(s):  
Xiaochang Liu ◽  
Jiuxia Pang ◽  
Christopher Seiler ◽  
Ryan Kempen ◽  
Hao Liu ◽  
...  

Introduction: It is known that overexpression of DNA methyltransferases (e.g., DNMT1) is frequent and changes of DNA cytosine methylation (5mC) are a constant feature of cancers. DNA methylation inhibitors, such as 5-aza-2'-deoxycytidine (Dec), have been in clinics for patients with leukemia. It is classically believed that promoter hypomethylation coupled by reexpression of epigenetically-suppressed tumor suppressors is a core mechanism behind Dec-impaired leukemia cell growth. However, the fact that global DNA methylation profiling barely predicts Dec-response suggests a demethylation-independent mechanism of Dec-induced cell death. N6-methyladenine (m6A) has been identified recently as an abundant DNA modification in eukaryotes (Wu, Nature 2016;532:329). Importantly, m6A is extensively present in the human genome, and m6A abundance is associated with tumorigenesis (Xie, Cell 2018;71:306). Furthermore, the DNA m6A is dynamically modulated by the methyltransferases (i.e., METTL3, N6AMT1) and demethylases (i.e., ALKBH1), and changes in m6A predict gene expression (Wu, Nature 2016;532:329). Given a potential crosstalk between m6A and distinct epigenetic mechanisms (Yao, Nat. Commun 2017;8:1122), we hypothesized that the anticancer actions of Dec may partially result from changes in DNA m6A in leukemia cells. Methods: Protein expression of target genes was assessed by Western blotting. The levels of DNA cytosine methylation (5mC) and N6-methyladenine (m6A) were measured by dotblotting or liquid chromatography-mass spectrometry (LC-MS/MS). The cell viability and apoptosis were determined by the Cell Counting Kit 8 (CCK8) assays as well as the Annexin V/Propidium Iodide staining and flow cytometry. The peripheral blood mononuclear cells (PBMCs) of leukemia patients from Mayo Clinic were prepared by Ficoll-Hypaque gradient centrifugation. Results: To test our hypothesis, leukemia cells, Kasumi-1, MV4-11, K562 and KU812, were exposed to 2 µM Dec, a clinical achievable concentration, for 72 hours. As expected, Dec treatment led to a downregulation of DNMT1 and DNMT3a, a reduction of 5mC levels by dotblotting using anti-5mC antibody, a blockage of cell proliferation and a promotion of cell apoptosis. When genomic DNA was subjected to dotblotting using anti-m6A antibody, the results revealed a marked decrease of DNA m6A levels in all Dec-treated cells. Then genomic DNA from K562 and MV4-11 cells was enzymatically digested to 2'-deoxynucleosides. dA was quantified by HPLC-UV, while the amount of m6A was measured by isotope dilution HPLC-ESI-MS/MS using 15N labeled internal standard. The standard curves were generated using pure standards, from which the m6A/A ratio was calculated. In agreement with dotblotting results, Dec treatment significantly decreased DNA m6A abundance in both cell lines. Mechanistically, exposure to Dec led to a consistent increase of demethylase fat mass and obesity-associated protein (FTO), but not METTL3 nor ALKBH1 and ALKBH5. Further, knockdown of FTO increased DNA m6A, which was further confirmed by treatment with FTO inhibitors rhein and meclofenamic acid (MA). These data indicate that FTO may be responsible for Dec-induced m6A changes in leukemia cells. To investigate the clinical implications of DNA m6A, we obtained PBMCs from AML patients (n = 10), who received Dec therapy (20 mg/m2 daily for 5 days every 4 weeks) in Mayo Clinic. These PBMCs were further cultured for 48 hours, frozen and stored in 100% ethanol before DNA extraction. The results from dotblotting using anti-5mC or anti-m6A showed that a trend of decrease in both m6A and 5mC abundance is observed, and the pattern of changes in m6A and 5mC displays a positive correlation. Finally, exposure of leukemia cells to the combination of Dec (2 µM) with FTO inhibitor MA (50 µM) induced more cell apoptosis and greater inhibition on cell proliferation as compared to single agent in vitro, supporting FTO inhibitors as new therapeutic agents in leukemia. Conclusion: Our studies suggest that the FTO-DNA m6A axis may partially mediate the therapeutic outcomes of Dec in leukemia. Our findings provide a new mechanistic paradigm for the anticancer activities of Dec, and define the m6A methylation status in leukemia cells as a new pharmacodynamic marker for their response to Dec-based therapy, pointing to a novel treatment strategy for incorporating m6A modulators to enhance the therapeutic index of Dec. Disclosures Al-Kali: Astex Pharmaceuticals, Inc.: Research Funding.


2021 ◽  
Author(s):  
Tianyu Dong ◽  
Xiaoyan Wei ◽  
Qianting Qi ◽  
Peilei Chen ◽  
Yanqing Zhou ◽  
...  

Abstract Background: Epigenetic regulation plays a significant role in the accumulation of plant secondary metabolites. The terpenoids are the most abundant in the secondary metabolites of plants, iridoid glycosides belong to monoterpenoids which is one of the main medicinal components of R.glutinosa. At present, study on iridoid glycosides mainly focuses on its pharmacology, accumulation and distribution, while the mechanism of its biosynthesis and the relationship between DNA methylation and plant terpene biosynthesis are seldom reports. Results: The research showed that the expression of DXS, DXR, 10HGO, G10H, GPPS and accumulation of iridoid glycosides increased at first and then decreased with the maturity of R.glutinosa, and under different concentrations of 5-azaC, the expression of DXS, DXR, 10HGO, G10H, GPPS and the accumulation of total iridoid glycosides were promoted, the promotion effect of low concentration (15μM-50μM) was more significant, the content of genomic DNA 5mC decreased significantly, the DNA methylation status of R.glutinosa genomes was also changed. DNA demethylation promoted gene expression and increased the accumulation of iridoid glycosides, but excessive demethylation inhibited gene expression and decreased the accumulation of iridoid glycosides. Conclusion: The analysis of DNA methylation, gene expression, and accumulation of iridoid glycoside provides insights into accumulation of terpenoids in R.glutinosa and lays a foundation for future studies on the effects of epigenetics on the synthesis of secondary metabolites.


2021 ◽  
Vol 11 (9) ◽  
pp. 1673-1682
Author(s):  
Feng Wang ◽  
Gengbao Qu ◽  
Baokai Wang

Objective: To investigate the function and causative role of simvastatin (Sim) in breast carcinoma cell apoptosis as well as proliferation. Methods: 20 breast carcinoma patients requiring surgery were treated with Sim (20 days, 30 mg), and samples of pre-treatment (pre) and post-treatment (post) were acquired. We detected tissue cell proliferation and apoptosis changes and used functional experiments to detect cell proliferation and apoptosis changes after treating not only estrogen receptor (ER)-positive (MCF-7) but also ER-negative cells (MDA-MB-231) with Sim or TGF-β1. Detection of p-Smad3 and total Smad3 protein expression changes was conducted, and we finally used in vivo experiments to assess the influence of Sim on breast tumor growth and drug safety. Results: Immunohistochemistry and TUNEL staining results showed that after treatment with Sim, breast carcinoma cell proliferation decreased and apoptosis increased. Functional experiments results showed that Sim notedly promoted the MDA-MB-231 and MCF-7 cell apoptosis, inhibiting migration, proliferation and epithelial mesenchymal transition. Moreover, TGF-β1 protein expression was strikingly lower in Sim group than that in DMSO group. When TGF-β1 and Sim were combined to use, the inhibitory ability of Sim on breast cancer cell proliferation markedly increased and the capability of TGF-β1 protein inducing p-Smad3 protein increased. In addition, after Sim treatment in mice, the tumor volume became smaller, the pathological changes weakened, and there was no significant effect on liver function and kidney function. Conclusion: Sim participates in breast cancer cell apoptosis and proliferation via regulating TGF-β1/Smad3 signal pathway.


2020 ◽  
Vol 56 (45) ◽  
pp. 6118-6121
Author(s):  
Juan Song ◽  
Jian-Bin Pan ◽  
Wei Zhao ◽  
Hong-Yuan Chen ◽  
Jing-Juan Xu

We report a GNR-assisted NIR-activated tool that could open TRPV1 ion channels and regulate apoptotic protein expression, thereby inducing cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document