scholarly journals P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development

2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Paola Monti ◽  
Yari Ciribilli ◽  
Giorgia Foggetti ◽  
Paola Menichini ◽  
Alessandra Bisio ◽  
...  

Abstract TP63 is a member of the TP53 gene family, sharing a common gene structure that produces two groups of mRNAs’ encoding proteins with different N-terminal regions (ΔN and TA isoforms); both transcripts are also subjected to alternative splicing mechanisms at C-terminus, generating a variety of isoforms. p63 is a master regulator of epidermal development and homoeostasis as well as an important player in tumorigenesis and cancer progression with both oncogenic and tumour suppressive roles. A number of studies have aimed at the identification of p63 target genes, allowing the dissection of the molecular pathways orchestrated by the different isoforms. In the present study we investigated in more detail the p63 responsiveness of the WDFY2 (WD repeat and FYVE domain containing 2) gene, encoding for an endosomal protein identified as a binding partner of the PI-3K/AKT signalling pathway. We showed that overexpression of different p63 isoforms was able to induce WDFY2 expression in TP53-null cells. The p63-dependent transcriptional activation was associated with specific response elements (REs) that have been identified by a bioinformatics tool and validated by yeast- and mammal-based assays. Interestingly, to confirm that WDFY2 belongs to the p63 network of cancer regulation, we analysed the impact of WDFY2 alterations, by showing its frequent deletion in different types of tumours and suggesting its expression level as a prognostic biomarker. Lastly, we identified a chromosomal translocation involving the WDFY2 locus in a patient affected by a rare congenital limb anomaly, indicating WDFY2 as a possible susceptibility gene placed downstream p63 in the network of limb development.

2021 ◽  
Vol 22 (12) ◽  
pp. 6258
Author(s):  
Rossana Domenis ◽  
Adriana Cifù ◽  
Catia Mio ◽  
Martina Fabris ◽  
Francesco Curcio

Exosomes released from tumor cells are instrumental in shaping the local tumor microenvironment to allow cancer progression. Recently, it has been shown that tumor exosomes carry large fragments of dsDNA, which may reflect the mutational status of parental cells. Although it has been described that a stressful microenvironment can influence exosomal cargo, the effects on DNA packing and its transfer into recipient cells have yet to be investigated. Here, we report that exosomes derived from SW480 (human colorectal adenocarcinoma cell line) cells can carry dsDNA fragments containing the entire coding sequence of both TP53 and KRAS genes, harboring the SW480-related TP53 c.818G > A and KRAS c.35G > T typical mutations. We also report the following: that cell stimulation with lipopolysaccharides (LPS) promotes the selective packaging of the TP53 gene, but not the KRAS gene; that exosomes secreted by SW480 cells efficiently transfer the mutated sequences into normal CCD841-CoN colon epithelial and THLE-2 hepatic cells; that this mechanism is more efficient when the cells had been previously incubated with pro-inflammatory cytokines; that the TP53 gene appears actively transcribed in both recipient cells; and that mutated mRNA levels are not influenced by cytokine treatment. Our data strongly suggest that pro-inflammatory stimulation promotes the horizontal transfer of an oncogene by exosomes, although this remains a rare event. Further studies are needed to assess the impact of the oncogenic transfer by exosomes in malignant transformation and its role in tumor progression.


2020 ◽  
Vol 295 (13) ◽  
pp. 4212-4223 ◽  
Author(s):  
Chun Guo ◽  
Jian Li ◽  
Nickolas Steinauer ◽  
Madeline Wong ◽  
Brent Wu ◽  
...  

In up to 15% of acute myeloid leukemias (AMLs), a recurring chromosomal translocation, termed t(8;21), generates the AML1–eight–twenty-one (ETO) leukemia fusion protein, which contains the DNA-binding domain of Runt-related transcription factor 1 (RUNX1) and almost all of ETO. RUNX1 and the AML1–ETO fusion protein are coexpressed in t(8;21) AML cells and antagonize each other's gene-regulatory functions. AML1–ETO represses transcription of RUNX1 target genes by competitively displacing RUNX1 and recruiting corepressors such as histone deacetylase 3 (HDAC3). Recent studies have shown that AML1–ETO and RUNX1 co-occupy the binding sites of AML1–ETO–activated genes. How this joined binding allows RUNX1 to antagonize AML1–ETO–mediated transcriptional activation is unclear. Here we show that RUNX1 functions as a bona fide repressor of transcription activated by AML1–ETO. Mechanistically, we show that RUNX1 is a component of the HDAC3 corepressor complex and that HDAC3 preferentially binds to RUNX1 rather than to AML1–ETO in t(8;21) AML cells. Studying the regulation of interleukin-8 (IL8), a newly identified AML1–ETO–activated gene, we demonstrate that RUNX1 and HDAC3 collaboratively repress AML1–ETO–dependent transcription, a finding further supported by results of genome-wide analyses of AML1–ETO–activated genes. These and other results from the genome-wide studies also have important implications for the mechanistic understanding of gene-specific coactivator and corepressor functions across the AML1–ETO/RUNX1 cistrome.


2017 ◽  
Vol 312 (5) ◽  
pp. R753-R762 ◽  
Author(s):  
Rivka Alexander-Shani ◽  
Ahmad Mreisat ◽  
Elia Smeir ◽  
Gary Gerstenblith ◽  
Michael D. Stern ◽  
...  

An important adaptive feature of heat acclimation (HA) is the induction of cross tolerance against novel stressors (HACT) Reprogramming of gene expression leading to enhanced innate cytoprotective features by attenuating damage and/or enhancing the response of “help” signals plays a pivotal role. Hypoxia-inducible factor-1α (HIF-1α), constitutively upregulated by HA (1 mo, 34°C), is a crucial transcription factor in this program, although its specific role is as yet unknown. By using a rat HA model, we studied the impact of disrupting HIF-1α transcriptional activation [HIF-1α:HIF-1β dimerization blockade by intraperitoneal acriflavine (4 mg/kg)] on its mitochondrial gene targets [phosphoinositide-dependent kinase-1 (PDK1), LON, and cyclooxygenase 4 (COX4) isoforms] in the HA rat heart. Physiological measures of cardiac HACT were infarct size after ischemia-reperfusion and time to rigor contracture during hypoxia in cardiomyocytes. We show that HACT requires transcriptional activation of HIF-1α throughout the course of HA and that this activation is accompanied by two metabolic switches: 1) profound upregulation of PDK1, which reduces pyruvate entry into the mitochondria, consequently increasing glycolytic lactate production; 2) remodeling of the COX4 isoform ratio, inducing hypoxic-tolerant COX4.2 dominance, and optimizing electron transfer and possibly ATP production during the ischemic and hypoxic insults. LON and COX4.2 transcript upregulation accompanied this shift. Loss of HACT despite elevated expression of the cytoprotective protein heat shock protein-72 concomitantly with disrupted HIF-1α dimerization suggests that HIF-1α is essential for HACT. The role of a PDK1 metabolic switch is well known in hypoxia acclimation but not in the HA model and its ischemic setting. Remodeling of COX4 isoforms by environmental acclimation is a novel finding.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3545-3545
Author(s):  
Kristine Baraoidan ◽  
Vinzon Ibanez ◽  
Chetna Mittal ◽  
Habte Yimer ◽  
Suman Chakraborty ◽  
...  

Abstract AML1 and PU.1, important regulators of hematopoietic differentiation, interact with each other and are known to synergize in transcriptional activation (Zhang et al, 1996). PU.1 and AML1 also interact with mSin3, a component of a co-repressor complex that can include N-CoR, HDAC and CBFA2T1 (ETO, MTG8) or CBFA2T3 (ETO2, MTG16). CBFA2T3 is highly expressed in hematopoietic cells and is a target of a chromosomal translocation found in acute myeloid leukemia (t(16;21)). In transfected 293T cells, we demonstrate that both AML1 and PU.1 co-immunoprecipitate with the conserved N-terminal TAFH domain of CBFA2T3 but not the C-terminal MYND domain. Although AML1 and PU.1 independently co-immunoprecipitate with CBFA2T3, when all three proteins are over-expressed in 293T cells, AML1 and PU.1 co-immunoprecipitate with each other while excluding CBFA2T3. CBFA2T3 interacts with the non-runt portion of AML1 (AML1 C-terminus) while PU.1 can interact with both the runt domain of AML1 and AML1 C-terminus. Presumably, the interaction between AML1 and PU.1 shields the CBFA2T3 binding sites on both proteins. Since this region includes the binding site for mSin3, other co-repressors may also be excluded from an AML1/PU.1 complex. This may be one basis for the co-operation between AML1 and PU.1 in transcriptional activation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-30-SCI-30
Author(s):  
Jay L. Hess ◽  
Cailin Collins ◽  
Joel Bronstein ◽  
Yuqing Sun ◽  
Surya Nagaraja

Abstract Abstract SCI-30 HOXA9 plays important roles in both development and hematopoiesis and is overexpressed in more than 50 percent of acute myeloid leukemias (AML). Nearly all cases of AML with mixed lineage leukemia (MLL) translocations show increased HOXA9 expression, as well as cases with mutation of the nucleophosmin gene NPM1, overexpression of CDX2, and fusions of NUP98. In most cases, upregulation of HOXA9 is accompanied by upregulation of its homeodomain-containing cofactor MEIS1, which directly interacts with HOXA9. While HOXA9 alone is sufficient for transformation of hematopoietic stem cells in culture, the addition of MEIS1 increases the transformation efficiency and results in rapidly fatal leukemias in transplanted animals. Despite the crucial role that HOXA9 plays in development, hematopoiesis, and leukemia, its transcriptional targets and mechanisms of action are poorly understood. We have used ChIP-seq to identify Hoxa9 and Meis1 binding sites on a genome-wide level in myeloblastic cells, profiled their associated epigenetic modifications, identified the target genes regulated by HOXA9 and identified HOXA9 interacting proteins. HOXA9 and MEIS1 cobind at hundreds of promoter distal, highly evolutionarily conserved sites showing high levels of histone H3K4 monomethylation and CBP/P300 binding. These include many proleukemogenic gene loci, such as Erg, Flt3, Myb, Lmo2, and Sox4. In addition, HOXA9 binding sites overlap a subset of enhancers previously implicated in myeloid differentiation and inflammation. HOXA9 binding at enhancers stabilizes association of MEIS1 and lineage-restricted transcription factors, including C/EBPα, PU.1, and STAT5A/B thereby promoting CBP/p300 recruitment, histone acetylation, and transcriptional activation. Current efforts are focused on using both biochemical and genetic approaches to assess the role of HOXA9 “enhanceosome” components C/EBPα, PU.1, and STAT5A/B in transcriptional regulation and leukemogenesis. Studies to date suggest that C/EBPα and PU.1 binding can occur in the absence of HOXA9/MEIS1, supporting a model in which these proteins act as pioneer transcription factors for establishment of poised, but not activated, HOXA9-regulated enhancers. Work is under way to assess the impact of high-level HOXA9 and MEIS1 on enhanceosome assembly and the role of recruitment of transcriptional coactivators involved in target gene up- or downregulation, including histone acetyltransferases and chromatin remodeling complexes. Collectively, our findings suggest that HOXA9-regulated enhancers are a fundamental mechanism of HOX-mediated transcription in normal development that is deregulated in leukemia. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 8 (6) ◽  
pp. 806-820 ◽  
Author(s):  
Sadri Znaidi ◽  
Katherine S. Barker ◽  
Sandra Weber ◽  
Anne-Marie Alarco ◽  
Teresa T. Liu ◽  
...  

ABSTRACT Cap1p, a transcription factor of the basic region leucine zipper family, regulates the oxidative stress response (OSR) in Candida albicans. Alteration of its C-terminal cysteine-rich domain (CRD) results in Cap1p nuclear retention and transcriptional activation. To better understand the function of Cap1p in C. albicans, we used genome-wide location profiling (chromatin immunoprecipitation-on-chip) to identify its transcriptional targets in vivo. A triple-hemagglutinin (HA3) epitope was introduced at the C terminus of wild-type Cap1p (Cap1p-HA3) or hyperactive Cap1p with an altered CRD (Cap1p-CSE-HA3). Location profiling using whole-genome oligonucleotide tiling microarrays identified 89 targets bound by Cap1p-HA3 or Cap1p-CSE-HA3 (the binding ratio was at least twofold; P ≤ 0.01). Strikingly, Cap1p binding was detected not only at the promoter region of its target genes but also at their 3′ ends and within their open reading frames, suggesting that Cap1p may associate with the transcriptional or chromatin remodeling machinery to exert its activity. Overrepresented functional groups of the Cap1p targets (P ≤ 0.02) included 11 genes involved in the OSR (CAP1, GLR1, TRX1, SOD1, CAT1, and others), 13 genes involved in response to drugs (PDR16, MDR1, FLU1, YCF1, FCR1, and others), 4 genes involved in phospholipid transport (PDR16, GIT1, RTA2, and orf19.932), and 3 genes involved in the regulation of nitrogen utilization (GST3, orf19.2693, and orf19.3121), suggesting that Cap1p has other cellular functions in addition to the OSR. Bioinformatic analyses of the bound sequences suggest that Cap1p recognizes the DNA motif 5′-MTKASTMA. Finally, transcriptome analyses showed that increased expression generally accompanies Cap1p binding at its targets, indicating that Cap1p functions as a transcriptional activator.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2125
Author(s):  
Magdalena C. Liebl ◽  
Thomas G. Hofmann

The transcription factor p53 functions as a critical tumor suppressor by orchestrating a plethora of cellular responses such as DNA repair, cell cycle arrest, cellular senescence, cell death, cell differentiation, and metabolism. In unstressed cells, p53 levels are kept low due to its polyubiquitination by the E3 ubiquitin ligase MDM2. In response to various stress signals, including DNA damage and aberrant growth signals, the interaction between p53 and MDM2 is blocked and p53 becomes stabilized, allowing p53 to regulate a diverse set of cellular responses mainly through the transactivation of its target genes. The outcome of p53 activation is controlled by its dynamics, its interactions with other proteins, and post-translational modifications. Due to its involvement in several tumor-suppressing pathways, p53 function is frequently impaired in human cancers. In colorectal cancer (CRC), the TP53 gene is mutated in 43% of tumors, and the remaining tumors often have compromised p53 functioning because of alterations in the genes encoding proteins involved in p53 regulation, such as ATM (13%) or DNA-PKcs (11%). TP53 mutations in CRC are usually missense mutations that impair wild-type p53 function (loss-of-function) and that even might provide neo-morphic (gain-of-function) activities such as promoting cancer cell stemness, cell proliferation, invasion, and metastasis, thereby promoting cancer progression. Although the first compounds targeting p53 are in clinical trials, a better understanding of wild-type and mutant p53 functions will likely pave the way for novel CRC therapies.


2000 ◽  
Vol 20 (16) ◽  
pp. 5789-5796 ◽  
Author(s):  
Richard Bayly ◽  
David P. LeBrun

ABSTRACT The oncogenic transcription factor E2a-Pbx1 is expressed in some cases of acute lymphoblastic leukemia as a result of chromosomal translocation 1;19. The early observation that E2a-Pbx1 incorporates transcriptional activation domains from E2a and a DNA-binding homeodomain from Pbx1 inspired a model in which E2a-Pbx1 promotes leukemogenic transformation of lymphoid progenitor cells through transcriptional induction of target genes defined by the Pbx1 portion of the molecule. However, the subsequent demonstration that the only known DNA-binding module on the molecule, the Pbx1 homeodomain, is dispensable for the induction of lymphoblastic lymphoma in transgenic mice called into question the contribution made by the Pbx1 portion. In this study, we have used a domain swap approach coupled with a fibroblast-based focus formation assay to evaluate further the requirement for PBX1-encoded peptide elements in growth deregulation by E2a-Pbx1. No impairment of focus formation was observed when the entire Pbx1 portion was replaced with DNA-binding/dimerization domains derived from yeast transcription factor GAL4 or GCN4. Furthermore, replacement of Pbx1 with tandem FKBP domains that mediate homodimerization in the presence of a synthetic ligand led to striking growth deregulation exclusively in the presence of the dimerizing agent. N-terminal elements encoded by E2A, including the AD1 transcriptional activation domain, were required for dimerization-induced focus formation. We conclude that transcriptional target genes defined by heterologous C-terminal DNA-binding modules are not required in growth deregulation by E2a fusion proteins. We speculate that interactions between N-terminal E2a elements and undefined proteins that could function as components of a transcriptional coactivator complex may be more important.


1998 ◽  
Vol 18 (9) ◽  
pp. 5073-5081 ◽  
Author(s):  
Kevin McBride ◽  
Mona Nemer

ABSTRACT The proto-oncogenes jun and fos are members of the AP-1 family of transcription factors, which activate transcription of target genes via the tetradecanoyl phorbol acetate response element (TRE). Both jun and foscontain activation domains, but their relative contributions to transcriptional activation of different TREs remain unclear. It is not apparent whether the cellular availability of specific AP-1 members is the major determinant for regulation of TREs or whether other factors including the TRE sequence itself contribute to selectivity. We have identified in the promoter of the rat atrial natriuretic factor (ANF) a novel AP-1 site which is unresponsive to jun homodimers and is inducible only in the presence of c-fos. This activation is potentiated by mitogen-activated protein (MAP) kinase. The jun proteins appear to be required solely to tether c-fos to the promoter, and c-fos mutants lacking putative activation domains abrogate transactivation. Unexpectedly, the oncogenic form of c-foswhich diverges most significantly in the carboxy-terminal 50 amino acids is unable to mediate transactivation at this specialized AP-1 site. Mutations within the C terminus of c-fos at serine residues that are phosphorylation targets for growth factors and MAP kinase completely abrogate transactivation and block potentiation by MAP kinase. Using GAL4 fusions, we show that the 90-amino-acid C terminus of c-fos contains autonomous activation domains and that the serine residues are essential for full activity. These results suggest that phosphorylation of the C terminus of c-fos affects its transactivation properties and provide evidence for novel regulatory mechanisms that may contribute to biologic specificities of the AP-1 transcription complex.


2002 ◽  
Vol 277 (51) ◽  
pp. 49488-49494 ◽  
Author(s):  
Rajnikant Mishra ◽  
Ivan P. Gorlov ◽  
Lian Y. Chao ◽  
Sanjaya Singh ◽  
Grady F. Saunders

PAX6 functions as a transcription factor and has two DNA-binding domains, a paired domain (PD) and a homeodomain (HD), joined by a glycine-rich linker and followed by a proline-serine-threonine-rich (PST) transactivation region at the C terminus. The mechanism of PAX6 function is not clearly understood, and few target genes in vertebrates have been identified. In this report we described the functional analyses of patient missense mutations from the paired domain region of PAX6 and a paireddomain-less isoform (PD-less) of Pax6 that lacks the paired domain and part of the glycine-rich linker. The PD-less was expressed in the brain, eyes, and pancreas of mouse. The level of expression of this isoform was relatively higher in brain. The mutation sites PAX6-L46R and -C52R were located in the PD of PAX6 on either end of the 5a-polypeptide insert of the alternatively spliced form of PAX6, PAX6-5a. Another PAX6 mutant V53L described in this report was adjacent to C52R. We created corresponding mutations in PAX6 and PAX6-5a, and evaluated their transcriptional activation and DNA binding properties. The PD mutants of PAX6 (L46R, C52R, and V53L) exhibited lower transactivation activities and variable DNA binding ability than wild-type PAX6 with PD DNA-binding consensus sequences. The mutated amino acids containing PAX6-5a isoforms showed unexpected transactivation properties with a reporter containing HD DNA-binding sequences. PAX6-5a-C52R, and -V53L showed lower transactivation activities, but PAX6-5a-L46R had greater transactivation ability than PAX6-5a. The PD-less isoform of Pax6 lost its transactivational ability but could bind to the HD DNA-binding sequences. Functional analysis of the PD-less isoform of Pax6 as well as findings related to missense mutations in the PD suggest that the PD of PAX6 is required for HD function.


Sign in / Sign up

Export Citation Format

Share Document