scholarly journals Experimental analysis of waste tyres as a sustainable source of energy

2019 ◽  
Vol 100 ◽  
pp. 00012 ◽  
Author(s):  
Dina Czajczyńska ◽  
Krzysztof M. Czajka ◽  
Renata Krzyżyńska ◽  
Hussam Jouhara

Nowadays, the stability of energy supply that additionally should be sustainable is one of the most important global issues. Thus, many new potential energy sources are being investigated. Since automobile industry is growing, a huge amount of waste tyres (WT) occur each year. Pyrolysis of scrap tyres can be considered as a sustainable way to recover significant amounts of energy as well as the valuable materials. Potential of waste tyres in the energy sector is studied in this work. Proximate, ultimate and thermogravimetric (TG) analysis of mechanically grounded WT sample was done. Waste tyres feature high heating value combined with carbon content as high as 87.90 % (on dry ash-free basis). Additionally, TG analysis allows to choose optimal operating temperature for pyrolysis process which is between 350 and 500°C. However, the sulphur content is also relatively high – around 2 wt.% - and it is the most important challenge for utilizing this waste in a thermochemical way.

Author(s):  
Hyungseok Nam ◽  
Amado Maglinao ◽  
Sergio Capareda

Solid manure handling is a major environmental issue confronting animal facilities in the United States. One difficulty in using dairy manure as a fuel source is the presence of sand bedding used for lactating dairy cows. More than 30% of dairy farms use sand beds for a dry and clean environment that prevents bacterial growth [1]. In this study, dairy animal manure obtained directly from waste lagoons was used for the air gasification process. The manure was dried to reduce the moisture down to 5% and a sand separating system was designed to remove some sand bedding materials. Preliminary air gasification experiments showed that the direct use of dairy manure containing 75% ash content, that reflect high sand content, reduced the temperature of the reactor. The study is also aimed at handling unprocessed dairy manure and generating electric power for the on-site use. A high heating value manure is needed to run the gasifier and the produced synthesis gas (or syngas) is fed to an engine coupled with a generator. Some dairy manure gasification work were done using fresh dairy manure. The highest heating value from the dairy manure biomass was found to be 4.5MJ/kg in a fixed-bed gasifier [2]. Another gasification study using a fluidized-bed reactor could produce syngas heating value as high as 4.7MJ/m3 from dairy manure [3]. A bench-scale fluidized bed containing a 3-inch diameter reactor tube with a cyclone and a scrubber was used to gasify dairy manure using air at different temperatures. The sand separated dairy manure used in this study contained approximately 45% ash content. The maximum heating value of the synthesis gas was 3.8MJ/m3 at an operating temperature of 750°C. The syngas will need to be upgraded. To upgrade the synthesis gas heating value, sludge pellets of 18.7MJ/kg were mixed with the dairy manure in different ratios of 10% and 30%. The syngas heating values from mixed manure with sludge pellet were increased to 5MJ/m3 with 10% sludge, and 5.7MJ/m3 with 30% sludge. The sludge used has higher heating value resulting in higher gas HV. The cold gasification efficiency was achieved as high as 36±5% with dairy manure mixed with sludge pellet. At a higher operating temperature, higher efficiency was obtained with increased gas composition of hydrogen and carbon monoxide. This syngas may then be used for power generation as well as possible input gas for the Fisher Tropsch process for liquid biofuel production. The result of the experiments will be a cornerstone for the widespread application of low heating value animal waste for producing high heating value syngas that may be used for electric power generation as a result of various upgrading processes.


2021 ◽  
Vol 13 (15) ◽  
pp. 8147
Author(s):  
Sasiwimol Khawkomol ◽  
Rattikan Neamchan ◽  
Thunchanok Thongsamer ◽  
Soydoa Vinitnantharat ◽  
Boonma Panpradit ◽  
...  

A horizontal drum kiln is a traditional method widely used in Southeast Asian countries for producing biochar. An understanding of temperature conditions in the kiln and its influence on biochar properties is crucial for identifying suitable biochar applications. In this study, four agricultural residues (corncob, coconut husk, coconut shell, and rice straw) were used for drum kiln biochar production. The agricultural residues were turned into biochar within 100–200 min, depending on their structures. The suitability of biochar for briquette fuels was analyzed using proximate, ultimate, and elemental analysis. The biochar’s physical and chemical properties were characterized via bulk density, iodine number, pHpzc, SEM, and FTIR measurements. All biochars had low O/C and H/C ratios and negative charge from both carbonyl and hydroxyl groups. Coconut husk and shell biochar had desirable properties such as high heating value and a high amount of surface functional groups which can interact with nutrients in soil. These biochars are thus suitable for use for a variety of purposes including as biofuels, adsorbents, and as soil amendments.


2020 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Rubén González ◽  
Judith González ◽  
José G. Rosas ◽  
Richard Smith ◽  
Xiomar Gómez

Anaerobic digestion is an established technological option for the treatment of agricultural residues and livestock wastes beneficially producing renewable energy and digestate as biofertilizer. This technology also has significant potential for becoming an essential component of biorefineries for valorizing lignocellulosic biomass due to its great versatility in assimilating a wide spectrum of carbonaceous materials. The integration of anaerobic digestion and pyrolysis of its digestates for enhanced waste treatment was studied. A theoretical analysis was performed for three scenarios based on the thermal needs of the process: The treatment of swine manure (scenario 1), co-digestion with crop wastes (scenario 2), and addition of residual glycerine (scenario 3). The selected plant design basis was to produce biochar and electricity via combined heat and power units. For electricity production, the best performing scenario was scenario 3 (producing three times more electricity than scenario 1), with scenario 2 resulting in the highest production of biochar (double the biochar production and 1.7 times more electricity than scenario 1), but being highly penalized by the great thermal demand associated with digestate dewatering. Sensitivity analysis was performed using a central composite design, predominantly to evaluate the bio-oil yield and its high heating value, as well as digestate dewatering. Results demonstrated the effect of these parameters on electricity production and on the global thermal demand of the plant. The main significant factor was the solid content attained in the dewatering process, which excessively penalized the global process for values lower than 25% TS.


2018 ◽  
Vol 37 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahibed-dine ◽  
Fouad Bentiss ◽  
...  

Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).


2018 ◽  
Vol 37 (1) ◽  
pp. 544-557 ◽  
Author(s):  
Alejandra Saffe ◽  
Anabel Fernandez ◽  
Germán Mazza ◽  
Rosa Rodriguez

The use of energy from biomass is becoming more common worldwide. This energy source has several benefits that promote its acceptance; it is bio-renewable, non-toxic and biodegradable. To predict its behavior as a fuel during thermal treatment, its characterization is necessary. The experimental determination of ultimate analysis data requires special instrumentation, while proximate analysis data can be obtained easily by using common equipment but, the required time is high. In this work, a methodology is applied based on thermogravimetric analysis, curves deconvolution and empirical correlations for characterizing different regional agro-industrial wastes to determine the high heating value, the contents of moisture, volatiles matter, fixed carbon, ash, carbon, hydrogen, oxygen, lignin, cellulose and hemicellulose. The obtained results are similar to those using standard techniques, showing the accuracy of proposed method and its wide application range. This methodology allows to determine the main parameters required for industrial operation in only in one step, saving time.


Author(s):  
V. Dhivakhar ◽  
Maju Varghese ◽  
Keerthi M. S. ◽  
S. Kaviya

About 40% of the Global Electricity produced is fuelled by coal. Although Coal has various advantages like good High Heating Value, easy availability etc., it also has various disadvantages. Green House Gas Released from Coal Thermal Power Plants is the single major contributor to Global warming. Coal is also nonrenewable. Hence it is important to analyze the viability of potential alternatives and reduce the usage of coal. In this assessment, various potential replacements of coal have been analyzed based on their High heating value (HHV) and their Global Warming Potential. The Global warming Potential (GWP) of the assessed fuels have been calculated by the Respiratory Quotient (RQ) Factor method. Hence a direct comparison between Coal and other replacements based on their HHV and GWP has been performed.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-10
Author(s):  
Shafwan Amrullah

Desa saat ini didorong menjadi desa mandiri, baik dalam bidang energi maupun ekonomi dengan mengimplementasikan energi terbarukan untuk meningkatkan kemandirian energi sebagai salah satu langkah meningkatkan ekonomi masyarakat. Penelitian ini bertujuan untuk menganalisis potensi penggunaan energi terbarukan seperti Pembangkit Listrik Tenaga Bayu (PLTB), Pembangkit Listrik Tenaga Surya (PLTS), Pembangkit Listrik Tenaga Air (PLTA), dan Konversi Energi Gasifikasi di desa Lendang Nangka, Kabupaten Lombok Timur. Penelitian dilakukan dengan pengumpulan data baik dari BMKG dan pengujian secara langsung menggunakan alat Air Flow Anemometer GM8902 untuk mengetahui kecepatan angin dan DIGITAL TECHNOMETER LX-1010B untuk mengetahui intensitas cahaya matahari. Selain itu dilakukan wawancara kepada pengusaha kecil dan menengah untuk mengetahui penggunaan energi dalam menyokong proses produksinya. Hasil dari penelitian menunjukkan bahwa potensi PLTB yang dapat diemplementasikan adalah PLTB sekala kecil dengan daya sekitar 23,4-632,88 kWh/turbin. Untuk potensi PLTS menghasilkan daya sebesar 410-566 kWh per meter persegi panel surya. Untuk potensi PLTA, turbin yang cocok adalah turbin ukuran kecil dengan potensi daya sekitar 0,3024-2,2194 kWh. Sedangkan untuk potensi penggunaan converter energi jenis gasifikasi dapat dilakukan untuk mengurangi penggunaan bahan bakar tidak terbarukan sekaligus menghemat biaya porduksi. Sebab, nilai High Heating Value gas sintetik yang dihasilkan 1,7 kali lebih besar daripada pembakaran langsung dengan kayu.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3226 ◽  
Author(s):  
Pablo Arauzo ◽  
Maciej Olszewski ◽  
Andrea Kruse

Hydrochar is a very interesting product from agricultural and food production residues. Unfortunately, severe conditions for complete conversion of lignocellulosic biomass is necessary, especially compared to the conversion of sugar compounds. The goal of this work is to improve the conversion of internal carbohydrates by application of a two-steps process, by acid addition and slightly higher water content. A set of experiments at different temperatures (180, 200, and 220 °C), reaction times (2 and 4 h), and moisture contents (80% and 90%) was performed to characterize the solid (high heating value (HHV), elemental) and liquid product phase. Afterwards, acid addition for a catalyzed hydrolysis reaction during hydrothermal carbonization (HTC) and a two-steps reaction (180 and 220 °C) were tested. As expected, a higher temperature leads to higher C content of the hydrochar and a higher fixed carbon (FC) content. The same effect was found with the addition of acids at lower temperatures. In the two-steps reaction, a primary hydrolysis step increases the conversion of internal carbohydrates. Higher water content has no significant effect, except for increasing the solubility of ash components.


2020 ◽  
Vol 15 (2) ◽  
pp. 506-514
Author(s):  
Niharika Sharma ◽  
Sagar Gupta ◽  
Anil Dutt Vyas

Abstract Non-sewer sanitation systems are widely implemented for treatment and management of faecal sludge (FS) and septage in developing nations. India became an open defecation free (ODF) country in 2019, with more than 90 million toilets at rural and urban level constructed to achieve this ODF status. Government of India also initiated a faecal sludge and septage management (FSSM) policy in 2017. This paper highlights the policy vision for the state of Rajasthan and predicts options for a safely managed sanitation system through exploring the fuel potential of faecal sludge generated in the city. The intended study is an attempt to valorize faecal sludge into a marketable product through determining the heat capacity of dried faecal sludge from different sources such as pit toilets, septic tanks etc. In the present work in urban Jaipur, which is already a water scarce city, various onsite sanitation systems were targeted to collect FS samples from different locations. It was observed that the FS generated has a high heating value of 13.96 MJ/kg, with total solids ranges from 7 to 9%. For a pragmatic resource recovery option, the experimental data observed is validated with a literature review.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 992 ◽  
Author(s):  
Donggu Lee ◽  
Junmo Kim ◽  
Gyeongtae Park ◽  
Hyeong Woo Bae ◽  
Myungchan An ◽  
...  

Organic solar cells (OSCs) are promising renewable energy sources for replacing fossil fuels. The power conversion efficiency (PCE) of OSCs has increased based on tremendous effort in material and device engineering. Still, the stability of OSC, such as long lifetime, negative temperature coefficient, must be enhanced for commercialization. In this study, we investigated OSC performance at a high operating temperature near 300–420 K, which are typical temperature regions in photovoltaic applications, with a different hole-extraction layer (HEL). The metal oxide-based HEL, MoO3, exhibited stable operating properties with a PCE drop rate of −0.13%/°C, as compared to polymeric HEL, PEDOT:PSS (−0.20%/°C). This performance reduction of polymeric HEL originated from the degradation of the interface in contact with PEDOT:PSS, as compared to the robust inorganic metal oxide HEL.


Sign in / Sign up

Export Citation Format

Share Document