scholarly journals The mechanical life of implements operating in corrosive service

2021 ◽  
Vol 273 ◽  
pp. 07004
Author(s):  
Galia Kokieva ◽  
Marfa Ochlopkova ◽  
Yurii Shaposhnikov ◽  
Varvara Trofimova

In severe operating conditions, there are machines for the preparation and introduction of mineral and organic fertilizers, herbicides, pesticides. They fail in order after two or three years due to corrosion and corrosion-mechanical wear. Under these conditions, the main thing is not to protect individual details, but the protection of the machine as a whole. Disclosure of the mechanism and patterns of corrosion-mechanical wear and corrosion of structural materials in aggressive environments made it possible to scientifically substantiate the most effective ways to increase the service life of machines at the stages of design, manufacturing and operation. Passive working bodies (frame, body, tank) polymer and gummed coatings are reliably protected from corrosion. Corrosion damage to the details of agricultural machines during storage. The illustrated surfaces of the working bodies of plows, seeders, cultivators, disk harrows and other agricultural machines in the storage period are oxidized and coated with rust. In some cases, it appears due to the destruction of the protective film of paint in others - due to violation of the storage rules. The lower parts of agricultural machines made of simple carbonistic structural and unfounded steels, in contrast to parts remote from the soil and no contact with it, corroded intensively.

2021 ◽  
Vol 1 (3) ◽  
pp. 31-36
Author(s):  
N.P. Balovnev ◽  
◽  
Y.I. Brovkina ◽  
L.A. Dmitrieva ◽  
◽  
...  

The article is devoted to the analysis of design features and operating conditions of V-belt trans-missions of agricultural machinery. When designing these gears, it is recommended to give prefer-ence to gears made according to an open circuit or with a tension roller located outside the belt con-tour, to avoid cross and semi-cross gears, as well as multi-pulley gears with crossing shaft axles. To make the wider use of more progressive types of belts. It was shown that the features of V-belt transmissions of agricultural machinery require clarification of the methods for calculating trans-missions with progressive types of V-belts and automatic belt tensioning methods. It was noted that special attention should be paid to transmissions with multi-profile belts, which calculation has not been sufficiently reflected in domestic regulatory documents. The advantages of such belts are es-pecially noticeable under variable and shock loading. Based on the analysis, the recommendations for clarifying the calculation of belt drives with multi-profile belts were given. Analytical dependencies are proposed for determining the value of the nominal power transmitted by one belt (stream) of a multi-profile belt, allowing automation of the calculation of V-belt transmissions of agricultural machinery. For gears with a tension or guide roller that add an extra (sometimes reverse) bend of the belt, it is proposed to determine the coeffi-cient taking into account different degrees of bending on the pulleys according to a graph built tak-ing into account the linear hypothesis of summation of damages. It is recommended to calculate gears with spring-loaded tensioning rollers and design tensioning devices for such transmissions using a special method that takes into account the belt tensioning method. At the same time, the required value of the pre-tension of the belt can be significantly re-duced, which will have a positive effect on its resource, without losing the traction capacity of the transmission itself. Expressions are given for finding the value of the pre-tension of belts, both for gears with tension due to the elasticity of the belt, and for gears with spring-loaded tension rollers. Conclusions and directions for further research are formulated.


Author(s):  
Vasiliy Kuril ◽  
Viktor Pryshlyak

The main dimensional characteristics of plant stems, bulk density, humidity, crop yields, tensile diagram and average stature strength indices, as well as the influence of cultivating agriculture on the characteristics of plant strength are analyzed. The peculiarities of the design and technological schemes of the segmental-type cutting apparatuses, which are the starting base of the calculation algorithm and the substantiation of the cutting edge parameters of the working organs of the s.-g. cars It is offered in engineering engineering technologies of designing working organs of the village of. machines comprehensively and systematically study the mechanic-technological properties of stems that are able to provide developed innovative pedagogical technologies and newest didactic teaching aids. Particular attention is paid to the quality of conducting lectures, including the open, scientific and pedagogical level, practical experience of the lecturer, which forms the basic theoretical basis for the process of cutting plants. Further, this knowledge is expanding and deepening during laboratory and practical classes, course design, training and production practices. It is shown that the use of educational didactic materials, modern agricultural machines and their working bodies in the educational process contributes to the development of motivation-value, creativity-cognitive and activity-practical criteria, which greatly influences the formation of design professional competencies of agroengineering.


2021 ◽  
Author(s):  
Roger Machado ◽  
Paola Andrea de Sales Bastos ◽  
Danny Daniel Socorro Royero ◽  
Eugene Medvedovski

Abstract Components and tubulars in down-hole applications for oil and gas production must withstand severe wear (e.g. erosion, abrasion, rod wear) and corrosion environments. These challenges can be addressed through boronizing of steels achieved employing chemical vapour deposition-based process. This process permits protection of the entire working surfaces of production tubulars up to 12m in length, as well as various sizes of complex shaped components. The performance of these tubulars and components have been evaluated in abrasion, erosion, and corrosion conditions simulating the environment and service conditions experienced in down-hole oil and gas production. Harsh service conditions are very common in the oil industry and the combination of abrasion, friction-induced wear, erosion, and corrosion environments can be quite normal in wells producing with the assistance of artificial lift methods. The boronized steel products demonstrated significantly higher performance in terms of material loss when exposed to harsh operating conditions granting a significant extension of the component service life in wear and corrosion environments. As opposed to many coating technologies, the boronizing process provides high integrity finished products without spalling or delamination on the working surface and minimal dimensional changes. Successful application of tubulars and components with the iron boride protective layer in oil and gas production will be discussed and presented.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
I Palamarchuk ◽  
◽  
V Vasyliv ◽  
V Sarana ◽  
M Mushtruk ◽  
...  

The main effects of the developed design for vibratory separator: the increased driving force in the process of bulk material separation in this work, achieved by providing the working cylindrical-conical container with vibrational motion; improving the conditions for the passage of product particles through openings, achieved by providing the sieve surface with volume oscillations; reduction of energy consumption and improvement of operating conditions for support nodes during the operation of the designed vibrating screen, achieved due to the installation of additional elastic elements between the separator body and bearing assemblies of the vertical drive shaft in vibration exciter. Providing the working bodies of the designed vibrating screen with volume oscillating motion allows increasing the performance and quality of the separation process of solid bulk materials. To determine the rational parameters for vibration screening process, the equations of motion of working bodies as a conical sieve surface were obtained using the method of the Lagrange equations of the second order. When applying solutions of the Cauchy problem for linear nonhomogeneous differential equations, the solution of the latter was obtained. The obtained dependences of oscillation amplitudes, vibration velocity and vibration acceleration, and the intensity of oscillating motion allowed us to perform a mathematical analysis for power and energy parameters of vibration drive in the developed separator. The inclined placement of the conical sieve surface allows for spatial gyration or circular translational motion, which makes it possible to realize the advantages of volumetric separation of bulk materials. The results of the conducted analytical study made it possible to substantiate the optimal inclination angle for working sieve surface. Based on our analysis, the design parameters of vibration exciter were substantiated and clarified, and the design of this technical system was demonstrated.


2012 ◽  
pp. 209-261

Abstract This chapter provides information and data on the fatigue and fracture properties of steel, aluminum, and titanium alloys. It explains how microstructure, grain size, inclusions, and other factors affect the fracture toughness and fatigue life of these materials and the extent to which they can be optimized. It also discusses the effect of metalworking and heat treatment, the influence of loading and operating conditions, and factors such as corrosion damage that can accelerate crack growth rates.


2014 ◽  
Vol 60 (Special Issue) ◽  
pp. S57-S65 ◽  
Author(s):  
P. Polák ◽  
R. Mikuš ◽  
V. Kročko

This contribution focuses on problems of monitoring the runout of tractor diesel motor parts used in agricultural operation. Crankshafts from the agricultural tractors of type Zetor 6911 are used as samples for measuring the runout and circularity. The first sample of the crankshaft is loaded in the tractor used in livestock production, and the second one is used in vegetable production. Measured values of the runout and circularity of both samples are evaluated by tables and polar diagrams. Results of the experiment show the amount of runout and the following wear of agricultural machine parts in different operating conditions of agricultural production.


Author(s):  
Vladimir Zilberstein ◽  
Ian Shay ◽  
Robert Lyons ◽  
Neil Goldfine ◽  
Thomas Malow ◽  
...  

Coatings for oxidation, corrosion, and thermal protection provide the required materials performance for gas turbine blades and vanes in state-of-the-art industrial gas turbines. These turbines must withstand severe operating conditions for well over ten thousand hours. Variations in the coating thickness, and increased porosity, can influence the lifetime of such coatings significantly. For components that have been removed from service, effective assessment of the aged coating and substrate condition is critical for refurbish/replace/continue-to-run decisions. A suitable device for coating thickness measurement and detection of unacceptable porosity is needed for ensuring the quality of such coatings. In this paper, we present new results on coating thickness measurements for metallic MCrAlY overlay coatings on gas turbine parts. These measurements were performed with a Meandering Winding Magnetometer (MWM®) eddy-current sensor using grid methods. This technique allows proper coating measurements even after a diffusion heat treatment for a better coating adhesive strength. The MWM technology enables measurement of the coating thickness, the absolute electrical conductivity (which may in turn be related to porosity or other properties of interest), and lift-off, which is related to surface roughness. Single-channel MWM sensors and multi-channel imaging MWM-Arrays permit capture of features of interest for a population of components. New capabilities for inspecting gas turbine components are, thus, provided. Inspection applications include metallic and non-metallic coating thickness measurements, porosity measurements, and detection of cracks on complex surfaces. Results of coating assessment for a production line of gas turbine vanes by means of a multifrequency MWM technique are presented for various combinations of coatings and base metals. A description of improved multiple frequency quantitative inversion methods is provided for simultaneous and independent measurement of multiple unknowns such as metallic bond coat thickness, metallic bond coat porosity, and top coat thickness. Ongoing research focuses on characterization of aged components using MWM sensors and imaging MWM-Arrays as well as on development of enhanced algorithms for four and five unknown coating / substrate properties. In a recent study of hot corrosion, uncoated nickel alloy specimens were characterized using an MWM sensor with grid methods. Preliminary results indicated that, within the limitations of the three-unknown single-layer model used, the method could readily identify specimens with no apparent corrosion damage, specimens with moderate corrosion damage, and specimens with severe corrosion damage.


Author(s):  
Oleksii Tokarchuk ◽  
Yurii Polievoda

Dynamic loads that occur during the operation of existing couplings cause significant shock loads, which leads to rapid wear of the surfaces of the couplings and shortens the service life. Modern technology faces the task of improving the operational reliability of the working bodies and drives of machines. One way to solve this problem is to develop and use high-precision and low-dynamic safety couplings. In this regard, the question of developing new designs of safety couplings that reduce impact loads and increase the reliability and durability of machinery is relevant. The synthesis of structural and kinematic schemes of ball, cam and planetary safety couplings, the method of their calculation in combination with the nature of the change in the moment of resistance on the working body of the equipment. The article conducts a set of theoretical and experimental studies to determine their rational design, kinematic and dynamic parameters that will satisfy the operating conditions of machines and mechanisms. A force analysis of the elastic element (ring spring) was performed. The scheme of loading of an elastic element by two forces and other settlement schemes are constructed, namely: equivalent system; force diagrams for determining the load torque; force schemes for determining the unit moment; schemes of total bending moment; force schemes to determine the total unit moment. During static experimental studies of the developed ball safety couplings, the nature of their operation was established, the maximum torque at the two stages of operation of the couplings was determined and a comparative analysis between the results of theoretical and experimental studies was performed. The positive results of experimental researches of the developed coupling and theoretical positions which can be applied to a substantiation and a choice of rational parameters of the developed designs of couplings and their engineering designing were confirmed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Sadiq Al-Ithari ◽  
Nabeel Al-Zurfi ◽  
Laith Zbbal Abd U. L. Kareem

AbstractThis work investigated reasons and factors that cause the failure due to mechanical wear (Erosion) for the inside surface of elbows and pipes used in cement transportation which manufactures from low carbon steel and finds out a method for reducing this failure. The technique of Nano-coating layers is used to coat the surface of samples with layers of nanoparticles of tungsten carbides of different thicknesses of (30, 40, and 50 μm). The test was done for these samples by placing them inside the elbow under the same operating conditions, pin on disc test. The results of the test under the same operation condition showed a decrease in erosion rate by 71% for the sample coated with 50 μm of layer, while the results of the pin on disc test showed a decrease in erosion rate by 97% for the thickness of 50 μm as this test is done under ideal testing conditions. The decrease in wear rate for elbow and pipes will increase their life work two times at least and that reduces the cost of maintenance by about 75%. The numerical simulation was also implemented to simulate the erosion profile inside the elbow, and the agreement with experimental results was 90%.


Sign in / Sign up

Export Citation Format

Share Document