scholarly journals Themo-mechanical Interfacial Stress Analysis in Electronic Packaging at Different Temperature Conditions: Revisit Author’s Work

2018 ◽  
Vol 202 ◽  
pp. 01006
Author(s):  
D. Sujan ◽  
L. Vincent ◽  
Y. W. Pok

The study of thermal mismatch induced stresses and their role in mechanical failure is one relevant topic to composite materials, photonic devices and electronic packages. Therefore, an understanding of the nature of the interfacial stresses under different temperature conditions is necessary in order to minimize or eliminate the risk of mechanical failure. An accurate estimate of thermal stresses in the interfaces plays a significant role in the design and reliability studies of microelectronic devices. In the microelectronic industry, from a practical point of view, there is a need for simple and powerful analytical models to determine interfacial stresses in layered structures. This review paper summarizes the work conducted by the authors in relation to the bi-layered assembly with different temperature conditions on the determination of interfacial thermal stresses. The authors have extended the case of uniform temperature model by earlier researchers of two layered structure to account for differential uniform temperatures, linear temperature gradient in the layers. The presence of a heat source in one layer (die) is also presented. Finally, the effect of bond material properties and geometry on interfacial stresses and bond material selection approach are also considered in a simple way.

2011 ◽  
Vol 87 ◽  
pp. 63-70 ◽  
Author(s):  
Sujan Debnath ◽  
Muhammad Ekhlasur Rahman ◽  
Woldemichael Dereje Engida ◽  
M. V. V. Murthy ◽  
K.N. Seetharamu

An interfacial shearing and peeling stress model is proposed to account for different uniform temperatures and thickness wise linear temperature gradients in the layers. This upgraded model can be viewed as a more generic form to determine interfacial stresses under different temperature conditions in a bi-layered assembly. The selected shearing and peeling stress results are presented for the case of die and die attach as commonly seen in electronic packaging. The obtained results can be useful in interfacial stress evaluations and physical design of bi-material assemblies, which are used in microelectronics and photonic applications.


2021 ◽  
pp. 107152
Author(s):  
Barış Nigar ◽  
Serhan Dönmez ◽  
Demirkan Çöker ◽  
Sezer Özerinç

2020 ◽  
Vol 2020 (1) ◽  
pp. 000094-000099
Author(s):  
Yuji Okada ◽  
Atsushi Fujii ◽  
Kenta Ono ◽  
Yoshiharu Kariya

Abstract In order to improve the performance and reliability of the package, the interlayer dielectric (Polymer) must not be delaminated and materials should not fracture due to thermal stresses during the operation or the manufacturing process. If the reliability of the package can be known in advance by simulation, it can be expected to greatly help in material selection and package design. Firstly, we created material-specific master curves (time–temperature superposition) by considering the measurement results of the Peel Test at the Cu/Polymer interface and the mechanical properties of polymer. The critical Energy Release Rate (𝒢𝒸) could be calculated by its master curve. Secondary, we calculated the Energy Release Rate (𝒢) from Finite Element Analysis (FEA) in the package model structure. Finally, delamination is judged by normalizing 𝒢/𝒢𝒸. This study has made it possible to simulate the delamination possibility of Cu/Polymer interface at arbitrary temperatures and displacement rates from basic material data and FEA analysis of the package model structure.


Aerospace ◽  
2020 ◽  
Vol 7 (7) ◽  
pp. 93
Author(s):  
Hamidreza Masoumi ◽  
Hamid Moeenfard ◽  
Hamed Haddad Khodaparast ◽  
Michael I. Friswell

The current research investigates the novel approach of coupling separate energy harvesters in order to scavenge more power from a stochastic point of view. To this end, a multi-body system composed of two cantilever harvesters with two identical piezoelectric patches is considered. The beams are interconnected through a linear spring. Assuming a stochastic band limited white noise excitation of the base, the statistical properties of the mechanical response and those of the generated voltages are derived in closed form. Moreover, analytical models are derived for the expected value of the total harvested energy. In order to maximize the expected generated power, an optimization is performed to determine the optimum physical and geometrical characteristics of the system. It is observed that by properly tuning the harvester parameters, the energy harvesting performance of the structure is remarkably improved. Furthermore, using an optimized energy harvester model, this study shows that the coupling of the beams negatively affects the scavenged power, contrary to the effect previously demonstrated for harvesters under harmonic excitation. The qualitative and quantitative knowledge resulting from this analysis can be effectively employed for the realistic design and modelling of coupled multi-body structures under stochastic excitations.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050063
Author(s):  
S. C. Tseng ◽  
C. K. Chao ◽  
F. M. Chen

This paper presents an analytical solution of a coated square hole embedded in an isotropic infinite plate under a remote uniform heat flow. Based on conformal mapping, analytic continuation theorem and the alternation technique, temperature and stress functions are derived in a compact series form. Results of temperature contours and interfacial stresses are validated using the finite element method. The comparison indicates the high accuracy of the proposed method. Numerical results of both the interfacial normal and shear stresses for different properties and geometric parameters of a coated layer are provided in a graphical form. The results indicate that the interfacial stresses are highly dependent on the thermal expansion coefficient, thickness of the coating layer and shape factor of the coated square hole. In conclusion, the interfacial shear stresses exhibit a significant increase at the corners with abrupt geometrical changes, which would cause the delamination of the coating layer system. Furthermore, increasing the thickness of the coating layer and the shape factor results in a higher interfacial stress.


2010 ◽  
Vol 64 ◽  
pp. 108-114 ◽  
Author(s):  
Wolfgang Tillmann ◽  
Lukas Wojarski ◽  
Benjamin Lehmert

The availability of adequate joining technologies is of major importance in order to exploit the full potential of ceramic materials. The same is true for joints between cemented carbides and their counterparts. Such joints are not easy to manufacture due to wetting and bonding problems as well as induced thermal stresses. Currently, active brazing is a potential approach for fabricating such joints. The filler alloy contains reactive agents such as Titanium or Hafnium etc. that interact by forming wettable reaction layers on the ceramic surface. It is self-evident that they function very well on cemented carbides as well. The paper describes potential wetting and bonding reactions from a metallurgical point of view. Ceramics, superabrasive and cemented carbides are investigated with respect to interfacial reactions. The quality of the reaction products is of crucial importance regarding the mechanical performance of the joints, as their immanent brittleness can lead to a significant weakening. Apart from metallurgical assessments, mechanical tests are conducted in order to deliver data for their integration in hybrid structures. FE methods can be applied to assess the stress situation in the final joint. Thus it is possible to adjust the design accordingly.


2013 ◽  
Vol 302 ◽  
pp. 468-473 ◽  
Author(s):  
Per Lindholm ◽  
Jian Qin

One way to achieve lightweight and lubricant-free drive train is, among others, to convert conventional steel to polymer composite materials. This paper describes a part of this endeavor by taking a spur gear pair as a study object. One of the steel gear wheel is replaced with three different materials including Victrex PEEK 650G, Victrex PEEK 650CA30 and Luvocom PEEK 1105-8165 while keeping the gear geometry unchanged. Mechanical stresses and thermal properties are two major criteria for material selection at this stage. Therefore carbon fiber filled PEEK (Victrex PEEK 650CA30) and PEEK filled with thermal conductive minerals (Luvocom 1105-8165) are chosen to benchmark each of the criterion. The evaluation is done by modeling the gear mesh and analyzing the contact forces and heat generated in the gear tooth. The results show surface temperature on the tooth flanks, root tensional stress and contact pressure during the tooth mesh. The work suggests a guideline of materials selection. Depending on actual application a compromisation between mechanical and thermal properties often needs to be considered within the tolerance boundary in order to obtain optimized results. This work only deals with material selection. Gear design such as optimization of tooth geometry for polymer gears is out of the scope of this study and will not be discussed.


Author(s):  
Maxim Serebreni ◽  
Patrick McCluskey ◽  
David Hillman ◽  
Nathan Blattau ◽  
Craig Hillman

With the larger size of Ball Grid Array (BGA) solder joints, the available volume for underfilling is significantly increased. Although the size of the solder joints and package dimension governs the volume of underfill material, the larger 2nd level solder interconnects are more susceptible to thermal fatigue with certain underfills and thermal profiles. In this study, BGA packages were underfilled with two dedicated underfill materials and two soft materials used as conformal coatings and encapsulants in electronic products. Each of the selected materials was subjected to two thermal profiles, one with low mean temperature and a second with a high mean temperature. The variation in mean cyclic temperature demonstrates the influence of temperature dependent behavior of each underfill material on the loads solder joints experience in a BGA package. Material characterization was performed on the package and underfill materials and incorporated into finite element models. The influence of underfill material glass transition temperature (Tg) was found to be a critical factor on fatigue endurance of solder interconnects. Fatigue crack orientation within solder joints were found to be aligned with axial (normal) direction for BGAs with high CTE underfill materials. Simulations determined the magnitude of axial loading associated with each underfill material properties responsible for reducing fatigue life. The results developed in this paper reveal the factors associated with reduced fatigue endurance of certain underfill materials under temperature profiles with mean temperature conditions and contribute to the development of new criteria of underfill material selection for 2nd level interconnects.


2019 ◽  
Vol 23 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Xue-jun He ◽  
Chao-Yang Zhou ◽  
Yi Wang

Fibre-reinforced polymers have been increasingly used to strengthen reinforced concrete structures. However, premature brittle debonding failures may occur at the ends of externally bonded fibre-reinforced polymer laminates due to interfacial stress concentrations caused by stiffness imbalances. Although many studies exist on fibre-reinforced polymer-strengthened simply supported beams and slabs, the interfacial stress distributions in fibre-reinforced polymer-strengthened cantilever members are very different from those in simply supported members. Based on the assumptions of linear elasticity, deformation compatibility and static equilibrium conditions, the interfacial stresses in fibre-reinforced polymer-strengthened reinforced concrete cantilever members under arbitrary linear distributed loads were analysed. In particular, closed-form solutions were obtained to calculate the interfacial stresses under either a uniformly distributed load or a single concentrated load located at the overhanging end of the cantilever member. Existing test results on cantilever slabs strengthened by carbon fibre–reinforced polymer sheets were used to verify the model. According to the parametric analysis, the maximum interfacial stresses can be reduced by decreasing the fibre-reinforced polymer thickness, increasing the fibre-reinforced polymer bonding length and increasing the adhesive layer thickness, and by using less rigid fibre-reinforced polymer laminates with high tensile strengths. These results are useful for engineers seeking to optimize strengthening design parameters and implement reliable debonding prevention measures.


Sign in / Sign up

Export Citation Format

Share Document