Epigenetics of Osteoporosis

2021 ◽  
Vol 30 (03) ◽  
pp. 230-242
Author(s):  
Oliver Bischof ◽  
Regina Ebert ◽  
Hanna Taipaleenmäki ◽  
Eric Hesse ◽  
Franz Jakob

AbstractFragile bone is the root cause of osteoporosis. For inherited or acquired reasons, the fragile bone does not provide sufficient fracture resistance to withstand the physical strains of a normal lifestyle. Accordingly, clinical characteristics consist of fragility fractures that occur during daily life activities or low energy trauma. Hip fractures and vertebral fractures are so called "major osteoporotic fractures”, that also cause the highest burden of disease. Although the clinical osteoporosis manifestations are relatively uniform, there is a vast spectrum of underlying molecular causes. Impaired bone formation, accelerated bone loss, and impaired lifetime adaptive regeneration according to physical impact characterize the cruder facets of osteoporosis. The signaling cascades that govern bone formation and metabolism may be altered by genetically or epigenetically inherited defects or acquired epigenetic changes due to tissue aging and/or underlying diseases. While molecular genetics and mechanisms and specific osteoporosis treatments have made impressive progress over the last three decades, there is still an urgent need to better understand the role of epigenetics in this disease.Epigenetic mechanisms such as covalent modifications of DNA, histones, or essential core factors like the osteogenic transcription factors (e. g., RUNX2) and inhibitory modulators of osteogenic WNT-signaling (e. g., Dickkopf-1 (DKK-1), sclerostin (SOST)) are all intricately implicated in developmental bone formation and adaptive regeneration and remodeling processes throughout adult life. These mechanisms are accompanied by chromatin architecture and gene expression changes of small (e. g., microRNAs (miRs)) and long, noncoding RNAs (lncRNAs). The timely execution of these mechanisms either facilitates or inhibits bone formation and remodeling. Together, epigenetic mechanisms controlling bone homeostasis widen the spectrum of potential dysregulations that can cause osteoporosis and open new avenues for therapeutic interventions.Apart from the core mechanisms of bone formation and regeneration, recent research revealed that tissue-resident cells of the immune system such as tissue-specific macrophages, myeloid precursors, and lymphocytes have surprisingly fundamental influence on tissue regeneration, including bone. Those tissue resident cells are also subject to epigenetic changes and may substantially contribute to the development of disease. Epigenetic constellations can be inherited, but the dynamic epigenetic mechanisms involved in physiological processes of tissue regeneration may also be affected by pathologies such as cellular aging and senescence. Recently, several studies aimed at identifying DNA methylation signatures in peripheral blood leukocytes from osteoporosis patients that reveal novel disease mechanisms and potential targets for diagnosis and treatment. Overall, these studies rendered, however, yet inconclusive results.By contrast, studies using bone marrow-derived skeletal progenitors identified transcriptome changes in osteoporosis patients, which could have epigenetic reasons in the absence of genetic causes. Respective changes may be related to the local milieu in bone and bone marrow as a kind of segmental attitude of a specific tissue acquired through tissue aging and/or supported by underlying aging-associated diseases such as arteriosclerosis or aging of cells of the immune system.In summary, there is cumulating evidence linking epigenetic factors to the pathogenesis of aging-associated osteoporosis. However, we are currently still limited in our knowledge with respect to the causal traits that are common, inherited, or acquired in a lifetime in the respective tissues and cells involved in bone formation and regeneration. During the following years, the field will most certainly learn more about molecular processes and factors that can be targeted therapeutically and/or used as biomarkers for risk assessment.

Author(s):  
G. A. Sofronov ◽  
E. L. Patkin

One of the complex problems of modern experimental toxicology remains the molecular mechanism of formation of human health disorders separated at different time periods from acute or chronic exposure to toxic environmental pollutants (ecotoxicants). Identifying and understanding what epigenetic changes are induced by the environment, and how they can lead to unfavorable outcome, are vital for protecting public health. Therefore, we consider it important a modern understanding of epigenetic mechanisms involved in the life cycle of mammals and assess available data on the environmentally caused epigenetic toxicity and, accordingly fledging epigenenomic (epigenetic) regulatory toxicology.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


2019 ◽  
Vol 16 (4) ◽  
pp. 386-391 ◽  
Author(s):  
Kenneth Lundstrom

Epigenetic mechanisms comprising of DNA methylation, histone modifications and gene silencing by RNA interference have been strongly linked to the development and progression of various diseases. These findings have triggered research on epigenetic functions and signal pathways as targets for novel drug discovery. Dietary intake has also presented significant influence on human health and disease development and nutritional modifications have proven important in prevention, but also the treatment of disease. Moreover, a strong link between nutrition and epigenetic changes has been established. Therefore, in attempts to develop novel safer and more efficacious drugs, both nutritional requirements and epigenetic mechanisms need to be addressed.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Verda Tunalıgil ◽  
Gülsen Meral ◽  
Ahmet Katı ◽  
Dhrubajyoti Chattopadhyay ◽  
Amit Kumar Mandal

Abstract:: Epigenetic changes in COVID-19 host, a pandemic-causing infectious agent that globally incapacitated communities in varying complexities and capacities are discussed, proposing an analogy that epigenetic processes contribute to disease severity and elevate the risk for death from infection. Percentages of hospitalization, with and without intensive care, in the presence of diseases with increased ACE2 expression, were compared, based on the best available data. Further analysis compared two different age groups, 19-64 and ≥65 years of age. The COVID-19 disease is observed to be the most severe in the 65-and-higher-age group with preexisting chronic conditions. This observational study is a non-experimental empirical investigation of the outcomes of COVID-19 in different patient groups. Results are promising for conducting clinical trials with intervention groups. To ultimately succeed in disease prevention, researchers and clinicians must integrate epigenetic mechanisms to generate valid prescriptions for global well-being.


2021 ◽  
pp. jclinpath-2020-207337
Author(s):  
Claudia Núñez-Torrón ◽  
Ana Ferrer-Gómez ◽  
Esther Moreno Moreno ◽  
Belen Pérez-Mies ◽  
Jesús Villarrubia ◽  
...  

BackgroundSecondary haemophagocytic lymphohistiocytosis (sHLH) is characterised by a hyper activation of immune system that leads to multiorgan failure. It is suggested that excessive immune response in patients with COVID-19 could mimic this syndrome. Some COVID-19 autopsy studies have revealed the presence of haemophagocytosis images in bone marrow, raising the possibility, along with HScore parameters, of sHLH.AimOur objective is to ascertain the existence of sHLH in some patients with severe COVID-19.MethodsWe report the autopsy histological findings of 16 patients with COVID-19, focusing on the presence of haemophagocytosis in bone marrow, obtained from rib squeeze and integrating these findings with HScore parameters. CD68 immunohistochemical stains were used to highlight histiocytes and haemophagocytic cells. Clinical evolution and laboratory parameters of patients were collected from electronic clinical records.ResultsEleven patients (68.7%) displayed moderate histiocytic hyperplasia with haemophagocytosis (HHH) in bone marrow, three patients (18.7%) displayed severe HHH and the remainder were mild. All HScore parameters were collected in 10 patients (62.5%). Among the patients in which all parameters were evaluable, eight patients (80%) had an HScore >169. sHLH was not clinically suspected in any case.ConclusionsOur results support the recommendation of some authors to use the HScore in patients with severe COVID-19 in order to identify those who could benefit from immunosuppressive therapies. The presence of haemophagocytosis in bone marrow tissue, despite not being a specific finding, has proved to be a very useful tool in our study to identify these patients.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 136
Author(s):  
Masahiko Terauchi ◽  
Atsushi Tamura ◽  
Yoshinori Arisaka ◽  
Hiroki Masuda ◽  
Tetsuya Yoda ◽  
...  

Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hideki Ueyama ◽  
Yoichi Ohta ◽  
Yuuki Imai ◽  
Akinobu Suzuki ◽  
Ryo Sugama ◽  
...  

Abstract Background Bone morphogenetic proteins (BMPs) induce osteogenesis in various environments. However, when BMPs are used alone in the bone marrow environment, the maintenance of new bone formation is difficult owing to vigorous bone resorption. This is because BMPs stimulate the differentiation of not only osteoblast precursor cells but also osteoclast precursor cells. The present study aimed to induce and maintain new bone formation using the topical co-administration of recombinant human BMP-2 (rh-BMP-2) and zoledronate (ZOL) on beta-tricalcium phosphate (β-TCP) composite. Methods β-TCP columns were impregnated with both rh-BMP-2 (30 µg) and ZOL (5 µg), rh-BMP-2 alone, or ZOL alone, and implanted into the left femur canal of New Zealand white rabbits (n = 56). The implanted β-TCP columns were harvested and evaluated at 3 and 6 weeks after implantation. These harvested β-TCP columns were evaluated radiologically using plane radiograph, and histologically using haematoxylin/eosin (H&E) and Masson’s trichrome (MT) staining. In addition, micro-computed tomography (CT) was performed for qualitative analysis of bone formation in each group (n = 7). Results Tissue sections stained with H&E and MT dyes revealed that new bone formation inside the β-TCP composite was significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Micro-CT data also demonstrated that the bone volume and the bone mineral density inside the β-TCP columns were significantly greater in those impregnated with both rh-BMP-2 and ZOL than in those from the other experimental groups at 3 and 6 weeks after implantations (p < 0.05). Conclusions The topical co-administration of both rh-BMP-2 and ZOL on β-TCP composite promoted and maintained newly formed bone structure in the bone marrow environment.


Sign in / Sign up

Export Citation Format

Share Document