Resveratrol: A Vital Therapeutic Agent with Multiple Health Benefits

Drug Research ◽  
2021 ◽  
Author(s):  
Arshpreet Kaur ◽  
Ruchi Tiwari ◽  
Gaurav Tiwari ◽  
Vadivelan Ramachandran

AbstractResveratrol (RSV), the most effective stilbene phytoalexin synthesized naturally or induced in plants as part of their defense mechanism, is a key component of natural phenolic compounds and is being considered as a treatment option for a variety of diseases. RSV was discovered in the skin of red grapes, mulberries, peanuts, pines, and Polygonum cuspidatum weed root extracts. It was first extracted from white hellebore (Veratrum grandiflorum O. Loes) roots in 1940, then from Polygonum cuspidatum roots in 1963. However, RSV’s use as a drug is limited due to its initial conformational strength and poor stability. The research focused on a set of RSV biological activity data. RSV has been the subject of growing concern, despite its wide range of biological and therapeutic applications. According to the literature, RSV has antioxidant, anti-cancer, cardioprotective, neuroprotective, anti- inflammatory, anti-microbial, immunomodulatory, and radioprotective properties. The current analysis summarized biological applications of RSV, their mechanisms of action, and recent scientific development in the area of their delivery. It is possible to infer that RSV has many effects on infected cells’ cellular functions.

2021 ◽  
Vol 11 ◽  
Author(s):  
Abel Tesfaye Anshabo ◽  
Robert Milne ◽  
Shudong Wang ◽  
Hugo Albrecht

Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.


2015 ◽  
Vol 68 (4) ◽  
pp. 253-257 ◽  
Author(s):  
K Lai ◽  
M C Killingsworth ◽  
C S Lee

PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K) which through its role in the PI3K/Akt pathway is important for the regulation of important cellular functions such as proliferation, metabolism and protein synthesis, angiogenesis and apoptosis. Mutations in PIK3CA are known to be involved in a wide range of human cancers and mutant PIK3CA is thought to act as an oncogene. The specific PIK3CA inhibitor, NVP-BYL719, has displayed promising results in cancer therapy and is currently under clinical trials. Furthermore, PI3K regulates autophagy, a cellular process that recycles proteins and organelles through lysosomal degradation and has recently been recognised as an attractive therapeutic target due to its pro- and anti-cancer properties. Several studies have attempted to investigate the effects of combining the inhibition of both PI3K and autophagy in cancer therapy, and an in vivo model has demonstrated that the combined use of a concomitant PI3K and autophagy inhibitor induced apoptosis in glioma cells.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009971
Author(s):  
Sushil Khatiwada ◽  
Gustavo Delhon ◽  
Sabal Chaulagain ◽  
Daniel L. Rock

Viruses have evolved mechanisms to subvert critical cellular signaling pathways that regulate a wide range of cellular functions, including cell differentiation, proliferation and chemotaxis, and innate immune responses. Here, we describe a novel ORFV protein, ORFV113, that interacts with the G protein-coupled receptor Lysophosphatidic acid receptor 1 (LPA1). Consistent with its interaction with LPA1, ORFV113 enhances p38 kinase phosphorylation in ORFV infected cells in vitro and in vivo, and in cells transiently expressing ORFV113 or treated with soluble ORFV113. Infection of cells with virus lacking ORFV113 (OV-IA82Δ113) significantly decreased p38 phosphorylation and viral plaque size. Infection of cells with ORFV in the presence of a p38 kinase inhibitor markedly diminished ORFV replication, highlighting importance of p38 signaling during ORFV infection. ORFV113 enhancement of p38 activation was prevented in cells in which LPA1 expression was knocked down and in cells treated with LPA1 inhibitor. Infection of sheep with OV-IA82Δ113 led to a strikingly attenuated disease phenotype, indicating that ORFV113 is a major virulence determinant in the natural host. Notably, ORFV113 represents the first viral protein that modulates p38 signaling via interaction with LPA1 receptor.


2020 ◽  
Vol 26 (6) ◽  
pp. 613-618
Author(s):  
A. V. Altukhov ◽  
S. A. Tishchenko

The presented study reviews practically relevant research papers in the field of network structures, modern network business models and platforms.Aim. The study aims to elaborate and explain the concept of network structure and platform and to show the reasons for the progressiveness and potential of network organizational structure at the current stage of socio-economic and scientific development.Tasks. The authors highlight the main scientific ideas about network structures in business, including significant studies in this area; provide and explain the main terms and definitions and examine the key characteristics of network business structures; characterize “platforms” as an important concept for modern business and show the relationship between platforms and network structures.Methods. This study uses analysis of information and subsequent synthesis of new knowledge in the form of the authors’ conclusions and a wide range of relevant scientific publications of Russian and foreign authors, including original publications in English and French.Results. The history of network structures is briefly provided. Definitions and characteristics of such concepts as “network structure” and “platform” in relation to business are provided and explained by the authors.


Author(s):  
Roohi Mohi-ud-din ◽  
Reyaz Hassan Mir ◽  
Prince Ahad Mir ◽  
Saeema Farooq ◽  
Syed Naiem Raza ◽  
...  

Background: Genus Berberis (family Berberidaceae), which contains about 650 species and 17 genera worldwide, has been used in folklore and various traditional medicine systems. Berberis Linn. is the most established group among genera with around 450-500 species across the world. This comprehensive review will not only help researchers for further evaluation but also provide substantial information for future exploitation of species to develop novel herbal formulations. Objective: The present review is focussed to summarize and collect the updated review of information of Genus Berberis species reported to date regarding their ethnomedicinal information, chemical constituents, traditional/folklore use, and reported pharmacological activities on more than 40 species of Berberis. Conclusion: A comprehensive survey of the literature reveals that various species of the genus possess various phytoconstituents mainly alkaloids, flavonoid based compounds isolated from different parts of a plant with a wide range of pharmacological activities. So far, many pharmacological activities like anti-cancer, anti-hyperlipidemic, hepatoprotective, immunomodulatory, anti-inflammatory both in vitro & in vivo and clinical study of different extracts/isolated compounds of different species of Berberis have been reported, proving their importance as a medicinal plant and claiming their traditional use.


Author(s):  
Amer Imraish ◽  
Afnan Al-Hunaiti ◽  
Tuqa Abu-Thiab ◽  
Abed Al-Qader Ibrahim ◽  
Eman Hwaitat ◽  
...  

Background: The growing unsatisfaction toward the available traditional chemotherapeutic agents enhanced the need to develop new methods for obtaining materials with more effective and safe anti-cancer properties. Over the past few years, usage of metallic nanoparticles has been a target for researchers of different scientific and commercial fields due to their tiny sizes, environment friendly properties and wide range applications. To overcome the obstacles of traditional physical and chemical methods for synthesis of such nanoparticles, a new less expensive and eco-friendly method has been adopted using natural existing organisms as a reducing agent to mediate synthesis of the desired metallic nanoparticles from their precursors, a process called green biosynthesis of nanoparticles. Objective: Here in the present study, zinc iron bimetallic nanoparticles (ZnFe2O4) were synthesized via an aqueous extract of Boswellia Carteri resin mixed with zinc acetate and iron chloride precursors, and they were tested for their anticancer activity. Methods: Various analytic methods were applied for the characterization of the Phyto synthesized ZnFe2O4 and they were tested for their anticancer activity against MDA-MB-231, K562, MCF-7 cancer cell lines and normal fibroblasts. Results: Our results demonstrate the synthesis of cubic structured bimetallic nanoparticles ZnFe2O4 with an average diameter 10.54 nm. MTT cytotoxicity assay demonstrate that our phyto-synthesized ZnFe2O4 nanoparticles exhibited a selective and potent anticancer activity against K562 and MDA-MB-231 cell lines with IC50 values 4.53 µM and 4.19 µM, respectively. Conclusion: In conclusion, our bio synthesized ZnFe2O4 nano particles show a promising environmentally friendly of low coast chemotherapeutic approach against selective cancers with a predicted low adverse side effect toward normal cells. Further in vivo advanced animal research should be done to execute their applicability in living organisms.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 660
Author(s):  
Lu Tan ◽  
Yiwen Zhang ◽  
Xingxing Wang ◽  
Dal Young Kim

Most alphaviruses are transmitted by mosquitoes and infect a wide range of insects and vertebrates. However, Eilat virus (EILV) is defective for infecting vertebrate cells at multiple levels of the viral life cycle. This host-restriction property renders EILV an attractive expression platform since it is not infectious for vertebrates and therefore provides a highly advantageous safety profile. Here, we investigated the feasibility of versatile EILV-based expression vectors. By replacing the structural genes of EILV with those of other alphaviruses, we generated seven different chimeras. These chimeras were readily rescued in the original mosquito cells and were able to reach high titers, suggesting that EILV is capable of packaging the structural proteins of different lineages. We also explored the ability of EILV to express authentic antigens via double subgenomic (SG) RNA vectors. Four foreign genetic materials of varied length were introduced into the EILV genome, and the expressed heterologous genetic materials were readily detected in the infected cells. By inserting an additional SG promoter into the chimera genome containing the structural genes of Chikungunya virus (CHIKV), we developed a bivalent vaccine candidate against CHIKV and Zika virus. These data demonstrate the outstanding compatibility of the EILV genome. The produced recombinants can be applied to vaccine and diagnostic tool development, but more investigations are required.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3888
Author(s):  
Boon-Peng Puah ◽  
Juriyati Jalil ◽  
Ali Attiq ◽  
Yusof Kamisah

Lycopene is a well-known compound found commonly in tomatoes which brings wide range of health benefits against cardiovascular diseases and cancers. From an anti-cancer perspective, lycopene is often associated with reduced risk of prostate cancer and people often look for it as a dietary supplement which may help to prevent cancer. Previous scientific evidence exhibited that the anti-cancer activity of lycopene relies on its ability to suppress oncogene expressions and induce proapoptotic pathways. To further explore the real potential of lycopene in cancer prevention, this review discusses the new insights and perspectives on the anti-cancer activities of lycopene which could help to drive new direction for research. The relationship between inflammation and cancer is being highlighted, whereby lycopene suppresses cancer via resolution of inflammation are also discussed herein. The immune system was found to be a part of the anti-cancer system of lycopene as it modulates immune cells to suppress tumor growth and progression. Lycopene, which is under the family of carotenoids, was found to play special role in suppressing lung cancer.


2004 ◽  
pp. 199-205 ◽  
Author(s):  
Radomir Malbasa ◽  
Eva Loncar ◽  
Ljiljana Kolarov

Black and green tea contains a wide range of natural phenolic compounds Flavanoids and their glycosides, catechins and the products of their condensation, and phenolic acids are the most important. Kombucha beverage is obtained by fermentation of tea fungus on black or green tea sweetened with sucrose. The aim of this paper was to investigate the composition of some phenolic compounds, catechin, epicatechin, quercetin, myricetin, gallic and tanic acid, and monitoring of their status during tea fungus fermentation. The method used for this study was thin layer chromatography with two different systems. The main phenolic compounds in the samples with green tea were catechin and epicatechin, and in the samples with black tea it was quercetin.


2013 ◽  
Vol 79 (21) ◽  
pp. 6737-6746 ◽  
Author(s):  
Hilda Tiricz ◽  
Attila Szűcs ◽  
Attila Farkas ◽  
Bernadett Pap ◽  
Rui M. Lima ◽  
...  

ABSTRACTLeguminous plants establish symbiosis with nitrogen-fixing alpha- and betaproteobacteria, collectively called rhizobia, which provide combined nitrogen to support plant growth. Members of the inverted repeat-lacking clade of legumes impose terminal differentiation on their endosymbiotic bacterium partners with the help of the nodule-specific cysteine-rich (NCR) peptide family composed of close to 600 members. Among the few tested NCR peptides, cationic ones had antirhizobial activity measured by reduction or elimination of the CFU and uptake of the membrane-impermeable dye propidium iodide. Here, the antimicrobial spectrum of two of these peptides, NCR247 and NCR335, was investigated, and their effect on the transcriptome of the natural targetSinorhizobium melilotiwas characterized. Both peptides were able to kill quickly a wide range of Gram-negative and Gram-positive bacteria; however, their spectra were only partially overlapping, and differences were found also in their efficacy on given strains, indicating that the actions of NCR247 and NCR335 might be similar though not identical. Treatment ofS. meliloticultures with either peptide resulted in a quick downregulation of genes involved in basic cellular functions, such as transcription-translation and energy production, as well as upregulation of genes involved in stress and oxidative stress responses and membrane transport. Similar changes provoked mainly in Gram-positive bacteria by antimicrobial agents were coupled with the destruction of membrane potential, indicating that it might also be a common step in the bactericidal actions of NCR247 and NCR335.


Sign in / Sign up

Export Citation Format

Share Document