Measurement of the lamella thickness during droplet impact onto differently wettable smooth surfaces using an extension of the LASER Pattern Shift Method with naturally occurring patterns

2021 ◽  
Vol 92 (10) ◽  
pp. 105111
Author(s):  
P. Foltyn ◽  
L. K. Rihm ◽  
D. Ribeiro ◽  
A. Silva ◽  
B. Weigand
Author(s):  
Anastasios Georgoulas ◽  
Konstantinos Vontas ◽  
Manolia Andredaki ◽  
Konstantinos Stefanos Nikas ◽  
Marco Marengo

The “Direct Numerical Simulations” (DNS) of droplet impact processes is of great interest and importance for a variety of industrial applications, where laboratory experiments might be difficult, costly and time-consuming. Furthermore, in most cases after validated against experimental data, they can be utilised to further explain the experimental measurements or to extend the experimental runs by performing “virtual” numerical experiments.  In such “DNS” calculations of the dynamic topology of the interface between the liquid and gas phase, the selected dynamic contact angle treatment is a key parameter for the accurate prediction of the droplet dynamics. In the present paper, droplet impact phenomena on smooth, dry surfaces are simulated using three different contact angle treatments. For this purpose, an enhanced VOF-based model, that accounts for spurious currents reduction, which has been previously implemented in OpenFOAM CFD Toolbox, is utilised and further enhanced. Apart from the already implemented constant and dynamic contact angle treatments in OpenFOAM, the dynamic contact angle model of Kistler, that considers the maximum advancing and minimum receding contact angles, is implemented in the code. The enhanced VOF model predictions are initially compared with literature available experimental data of droplets impacting on smooth surfaces with various wettability characteristics. The constant contact angle treatment of OpenFOAM as well as the Kistler’s implementation show good qualitative and quantitative agreement with experimental results up to the point of maximum spreading, when the spreading is inertia dominated. However, only Kistler’s model succeeds to accurately predict both the advancing and the recoiling phase of the droplet impact, for a variety of surface wettability characteristics. The dynamic contact angle treatment fails to predict almost all stages of the droplet impact. The optimum version of the model is then applied for 2 additional series of parametric numerical simulations that identify and quantify the effects of surface tensionand viscosity, in the droplet impact dynamics.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.5020


Author(s):  
A. W. Fetter ◽  
C. C. Capen

Atrophic rhinitis in swine is a disease of uncertain etiology in which infectious agents, hereditary predisposition, and metabolic disturbances have been reported to be of primary etiologic importance. It shares many similarities, both clinically and pathologically, with ozena in man. The disease is characterized by deformity and reduction in volume of the nasal turbinates. The fundamental cause for the localized lesion of bone in the nasal turbinates has not been established. Reduced osteogenesis, increased resorption related to inflammation of the nasal mucous membrane, and excessive resorption due to osteocytic osteolysis stimulated by hyperparathyroidism have been suggested as possible pathogenetic mechanisms.The objectives of this investigation were to evaluate ultrastructurally bone cells in the nasal turbinates of pigs with experimentally induced atrophic rhinitis, and to compare these findings to those in control pigs of the same age and pigs with the naturally occurring disease, in order to define the fundamental lesion responsible for the progressive reduction in volume of the osseous core.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
L. Andrew Staehelin

Freeze-etched membranes usually appear as relatively smooth surfaces covered with numerous small particles and a few small holes (Fig. 1). In 1966 Branton (1“) suggested that these surfaces represent split inner mem¬brane faces and not true external membrane surfaces. His theory has now gained wide acceptance partly due to new information obtained from double replicas of freeze-cleaved specimens (2,3) and from freeze-etch experi¬ments with surface labeled membranes (4). While theses studies have fur¬ther substantiated the basic idea of membrane splitting and have shown clearly which membrane faces are complementary to each other, they have left the question open, why the replicated membrane faces usually exhibit con¬siderably fewer holes than particles. According to Branton's theory the number of holes should on the average equal the number of particles. The absence of these holes can be explained in either of two ways: a) it is possible that no holes are formed during the cleaving process e.g. due to plastic deformation (5); b) holes may arise during the cleaving process but remain undetected because of inadequate replication and microscope techniques.


Author(s):  
G. M. Hutchins ◽  
J. S. Gardner

Cytokinins are plant hormones that play a large and incompletely understood role in the life-cycle of plants. The goal of this study was to determine what roles cytokinins play in the morphological development of wheat. To achieve any real success in altering the development and growth of wheat, the cytokinins must be applied directly to the apical meristem, or spike of the plant. It is in this region that the plant cells are actively undergoing mitosis. Kinetin and Zeatin were the two cytokinins chosen for this experiment. Kinetin is an artificial hormone that was originally extracted from old or heated DNA. Kinetin is easily made from the reaction of adenine and furfuryl alcohol. Zeatin is a naturally occurring hormone found in corn, wheat, and many other plants.Chinese Spring Wheat (Triticum aestivum L.) was used for this experiment. Prior to planting, the seeds were germinated in a moist environment for 72 hours.


Author(s):  
David R. Veblen

Extended defects and interfaces control many processes in rock-forming minerals, from chemical reactions to rock deformation. In many cases, it is not the average structure of a defect or interface that is most important, but rather the structure of defect terminations or offsets in an interface. One of the major thrusts of high-resolution electron microscopy in the earth sciences has been to identify the role of defect fine structures in reactions and to determine the structures of such features. This paper will review studies using HREM and image simulations to determine the structures of defects in silicate and oxide minerals and present several examples of the role of defects in mineral chemical reactions. In some cases, the geological occurrence can be used to constrain the diffusional properties of defects.The simplest reactions in minerals involve exsolution (precipitation) of one mineral from another with a similar crystal structure, and pyroxenes (single-chain silicates) provide a good example. Although conventional TEM studies have led to a basic understanding of this sort of phase separation in pyroxenes via spinodal decomposition or nucleation and growth, HREM has provided a much more detailed appreciation of the processes involved.


2020 ◽  
Vol 134 (12) ◽  
pp. 1403-1432 ◽  
Author(s):  
Manal Muin Fardoun ◽  
Dina Maaliki ◽  
Nabil Halabi ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Abstract Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.


2008 ◽  
Vol 78 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Fan ◽  
Jiang ◽  
Zhang ◽  
Bai

In efforts to identify naturally occurring compounds that act as protective agents, resveratrol, a phytoalexin existing in wine, has attracted much interest because of its diverse pharmacological characteristics. Considering that apoptosis induction is the most potent defense approach for cancer treatment, we have tried to summarize our present understanding of apoptosis induction by resveratrol based on the two major apoptosis pathways.


2007 ◽  
Vol 23 (4) ◽  
pp. 248-257 ◽  
Author(s):  
Matthias R. Mehl ◽  
Shannon E. Holleran

Abstract. In this article, the authors provide an empirical analysis of the obtrusiveness of and participants' compliance with a relatively new psychological ambulatory assessment method, called the electronically activated recorder or EAR. The EAR is a modified portable audio-recorder that periodically records snippets of ambient sounds from participants' daily environments. In tracking moment-to-moment ambient sounds, the EAR yields an acoustic log of a person's day as it unfolds. As a naturalistic observation sampling method, it provides an observer's account of daily life and is optimized for the assessment of audible aspects of participants' naturally-occurring social behaviors and interactions. Measures of self-reported and behaviorally-assessed EAR obtrusiveness and compliance were analyzed in two samples. After an initial 2-h period of relative obtrusiveness, participants habituated to wearing the EAR and perceived it as fairly unobtrusive both in a short-term (2 days, N = 96) and a longer-term (10-11 days, N = 11) monitoring. Compliance with the method was high both during the short-term and longer-term monitoring. Somewhat reduced compliance was identified over the weekend; this effect appears to be specific to student populations. Important privacy and data confidentiality considerations around the EAR method are discussed.


Sign in / Sign up

Export Citation Format

Share Document