Modes of transmission of rumen protozoa between mature sheep

2010 ◽  
Vol 50 (6) ◽  
pp. 414 ◽  
Author(s):  
Simon H. Bird ◽  
R. S. Hegarty ◽  
R. Woodgate

Three experiments were conducted to evaluate routes by which viable rumen ciliate-protozoa may be transferred between mature sheep. Feed, water and faecal material were tested as possible vectors for protozoal transfer in addition to direct animal to animal contact. In Experiment 1, protozoa-free sheep were either offered or orally dosed with protozoa-contaminated material or allowed contact with faunated animals. The treated sheep were then monitored over a 4-week period for the appearance of protozoa in the rumen. Protozoa were successfully transferred to protozoa-free animals via contaminated water but no transfer occurred via feed or faeces or by direct animal to animal contact. In Experiment 2, the drinking water of penned faunated sheep was found to become contaminated with protozoa within 4–6 h of being placed in the pen. In Experiment 3, nine protozoa-free sheep were grazed in a paddock with a flock of 75 faunated ewes for periods of 1–3 weeks, and protozoa became established in one protozoa-free sheep. The results of these studies suggest that the most likely mode of transfer of protozoal cells from one sheep to another is via water, rather than by rumen fluid contaminating feed, or from faeces of faunated sheep. Further tests are required to demonstrate protozoal transmission via water occur under a range of conditions and inoculum levels.

1998 ◽  
Vol 1998 ◽  
pp. 88-88
Author(s):  
B. Teferedegne ◽  
P.O. Osuji ◽  
A. Odenyo ◽  
R. J. Wallace ◽  
C.J. Newbold

Foliage from the tropical leguminous tree, Sesbania sesban, is toxic to rumen protozoa in vitro, due to materials present in a saponins-containing extract of the foliage (Newbold et al. 1997). Suppression of protozoal numbers in vivo when S. sesban is added to the diet is either transient or non-existent, however, even though washed protozoa remain sensitive to S. sesban in vitro (Newbold et al. 1997, Odenyo et al. 1997). A possible reason is that saponins are metabolised in rumen fluid (Makkar and Becker 1997). The aims of this study were to determine if the antiprotozoal effect of different accessions of S. sesban was related to their saponins composition, and if conversion of saponins to their sapogenin derivatives was a possible cause of the loss of the antiprotozoal effect in vivo.


1998 ◽  
Vol 1998 ◽  
pp. 88-88
Author(s):  
B. Teferedegne ◽  
P.O. Osuji ◽  
A. Odenyo ◽  
R. J. Wallace ◽  
C.J. Newbold

Foliage from the tropical leguminous tree, Sesbania sesban, is toxic to rumen protozoa in vitro, due to materials present in a saponins-containing extract of the foliage (Newbold et al. 1997). Suppression of protozoal numbers in vivo when S. sesban is added to the diet is either transient or non-existent, however, even though washed protozoa remain sensitive to S. sesban in vitro (Newbold et al. 1997, Odenyo et al. 1997). A possible reason is that saponins are metabolised in rumen fluid (Makkar and Becker 1997). The aims of this study were to determine if the antiprotozoal effect of different accessions of S. sesban was related to their saponins composition, and if conversion of saponins to their sapogenin derivatives was a possible cause of the loss of the antiprotozoal effect in vivo.


2020 ◽  
Author(s):  
Andrew John PENDERY

There are some striking similarities between Legionnaire’s disease and COVID-19. Thesymptoms, age group and sex at risk are identical. The geographical distribution of both diseases is similar in Europe overall, and within the USA, France and Italy. The environmental distributions are also similar. However Legionnaire’s disease is caused by Legionella bacteria while COVID-19 is caused by the Corona virus. Whereas COVID-19 is contagious, Legionnaire’s disease is environmental. Legionella bacteria are commonly found in drinking water systems and near air conditioning cooling towers. Legionnaire’sdisease is caught by inhaling contaminated water droplets. The Legionella bacteria does not spread person to person and only causes disease if it enters the lungs.Could the Corona virus be making it easier for Legionella bacteria to enter the lungs?


Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 380
Author(s):  
Yan Chen ◽  
Huiping Li ◽  
Weihai Pang ◽  
Baiqin Zhou ◽  
Tian Li ◽  
...  

Nanofiltration (NF) is a promising post-treatment technology for providing high-quality drinking water. However, membrane fouling remains a challenge to long-term NF in providing high-quality drinking water. Herein, we found that coupling pre-treatments (sand filtration (SF) and ozone–biological activated carbon (O3-BAC)) and NF is a potent tactic against membrane fouling while achieving high-quality drinking water. The pilot results showed that using SF+O3-BAC pre-treated water as the feed water resulted in a lower but a slowly rising transmembrane pressure (TMP) in NF post-treatment, whereas an opposite observation was found when using SF pre-treated water as the feed water. High-performance size-exclusion chromatography (HPSEC) and three-dimensional excitation–emission matrix (3D-EEM) fluorescence spectroscopy determined that the O3-BAC process changed the characteristic of dissolved organic matter (DOM), probably by removing the DOM of lower apparent molecular weight (LMW) and decreasing the biodegradability of water. Moreover, amino acids and tyrosine-like substances which were significantly related to medium and small molecule organics were found as the key foulants to membrane fouling. In addition, the accumulation of powdered activated carbon in O3-BAC pre-treated water on the membrane surface could be the key reason protecting the NF membrane from fouling.


1981 ◽  
Vol 44 (12) ◽  
pp. 917-920 ◽  
Author(s):  
A. STERSKY ◽  
B. BLANCHFIELD ◽  
C. THACKER ◽  
H. PIVNICK

Day-old chicks (Gallus domesticus) were treated with cultured feces of adult chickens according to the Nurmi concept and were challenged 2 days later with Salmonella typhimurium. Treated chicks were less susceptible to infection than untreated chicks (16% vs. 79% infected). Those treated chicks that did become infected, contaminated their drinking water with fewer Salmonella than the untreated chicks (maximum of 104/ml vs. ⩾ 107/ml). Fecally contaminated water may be a major source for spreading Salmonella infection within a flock.


Author(s):  
JOSEINA MOUTINHO TAVARES ◽  
Anderson Silva de Oliveira ◽  
Paulo Moutinho Andrade de Souza ◽  
Walter da Silva Junior

This work aims to evaluate the quality of drinking water in the communities of Baiacu, Sao Francisco do Conde, Santo Amaro and Cachoeira. It was verified that in some places of Santo Amaro and Sao Francisco do Conde, from the microbiological point of view, it is not appropriate for consumption, because it was found that the presence of total coliforms in 50% of the samples and that the chlorine content is below the values indicated by the standards in 75% of the analyzed samples. Thus, the consumption of contaminated water can cause diseases, so it is recommended cleaning of residential reservoirs, maintenance in pipes periodically, as well as the need for continuous monitoring of water quality and the intense participation of public agencies in these actions. Through these actions and the active participation of the population, one can preserve the environment and the lives of all those who transit in the communities of the Bay of All Saints


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3496 ◽  
Author(s):  
Casper Clausen ◽  
Maria Dimaki ◽  
Christian Bertelsen ◽  
Gustav Skands ◽  
Romen Rodriguez-Trujillo ◽  
...  

Monitoring of bacteria concentrations is of great importance in drinking water management. Continuous real-time monitoring enables better microbiological control of the water and helps prevent contaminated water from reaching the households. We have developed a microfluidic sensor with the potential to accurately assess bacteria levels in drinking water in real-time. Multi frequency electrical impedance spectroscopy is used to monitor a liquid sample, while it is continuously passed through the sensor. We investigate three aspects of this sensor: First we show that the sensor is able to differentiate Escherichia coli (Gram-negative) bacteria from solid particles (polystyrene beads) based on an electrical response in the high frequency phase and individually enumerate the two samples. Next, we demonstrate the sensor’s ability to measure the bacteria concentration by comparing the results to those obtained by the traditional CFU counting method. Last, we show the sensor’s potential to distinguish between different bacteria types by detecting different signatures for S. aureus and E. coli mixed in the same sample. Our investigations show that the sensor has the potential to be extremely effective at detecting sudden bacterial contaminations found in drinking water, and eventually also identify them.


2017 ◽  
Vol 6 (2) ◽  
pp. 57-59 ◽  
Author(s):  
Md Akbar Hossain ◽  
Afroza Begum ◽  
Khursheda Akhtar

Background: Excessive amounts of arsenic (As) in the groundwater in Bangladesh and neighbouring countries are also a major public health problem.Objective: The purpose of the present study was to find out the knowledge of arsenic contamination in drinking water and health hazards due to chronic arsenic toxicity among the people living in selected villages of Bangladesh.Methodology: This cross sectional descriptive type of study was conducted purposively among the people of the selected two villages of Bhanga Upazilla of Faridpur district from January 2007 to June 2007. All the relevant socio-demographic characteristics and data were collected by face to face interview.Results: A total number of 360 people were recruited. It was found that 273(85.3%) of the respondents family member used tube well water for drinking purpose of the respondents, 317(99.1%) persons heard of arsenic contamination in drinking water. About 284 (88.8%) respondents had the correct knowledge about identifying color of arsenic contaminated and arsenic free tube well. It was found that l76(55.5%) people knew the correct answer about the duration of use of arsenic contaminated water to causes chronic arsenic toxicity. It also revealed that 107(33.4%) respondents did not know about sign of chronic arsenic toxicity.Conclusion: Excellent knowledge on arsenic contamination in drinking water and health hazards due to chronic arsenic toxicity is found among the people living in selected villages of Bangladesh.J Shaheed Suhrawardy Med Coll, 2014; 6(2):57-59


2010 ◽  
Vol 39 (10) ◽  
pp. 2262-2267 ◽  
Author(s):  
Raul Franzolin ◽  
Burk A. Dehority

In order to study the effect of pH on defaunation in the rumen, four rumen fistulated steers were fed a basal roughage diet for a 4-week adaptation period followed by 17 weeks of feeding with three diets and two feeding levels of high concentrate diet. Rumen outflow fluid rate was evaluated in both ration levels. Rumen protozoa population was monitored weekly and when animals became defaunated, protozoa were reinoculated with rumen contents from one of the faunated steers. At every two weeks, during all the experimental period, rumen pH was measured in all animals at 0, 4, 8 and 12 h after feeding. It was observed an individual animal influence on the establishment and maintenance of the rumen ciliate protozoa population. In all sampling times, mean rumen pH values were higher in faunated steers than in the defaunated ones. No differences were observed in rumen outflow fluid rates between the two ration levels. Extended periods of low rumen pH are probably more detrimental to the survival of ciliate protozoa in the rumen than other factors.


2016 ◽  
Vol 19 (3) ◽  
Author(s):  
NASIR SUBRIYER

<p>The declining water quality in Sriwijaya University has been caused by the presence of heavy metal contents such as Iron (Fe) and Zinc (Zn) in the treatment and distribution of water. A simple method is proposed in this work to minimize the heavy metal content in water by using filtration technology. This research was carried out using ceramic filter made of 77.5% natural clay, 20% fly ash, and 2.5% iron powder. The results showed an increase in the quality of raw water that is in accordance with the requirement of drinking water standard. The rejection percentage of TDS, Iron (Fe) and Zinc (Zn) content in feed water tended to be high and met the regulation number 492/MENKES/PER/IV/2010 for standards of drinking water in Indonesia.</p>


Sign in / Sign up

Export Citation Format

Share Document