GRIM-19, a gene associated with retinoid-interferon-induced mortality, affects endometrial receptivity and embryo implantation

2017 ◽  
Vol 29 (7) ◽  
pp. 1447 ◽  
Author(s):  
Yang Yang ◽  
Yanyan Sun ◽  
Laiyang Cheng ◽  
Anna Li ◽  
Yanjun Shen ◽  
...  

GRIM-19 is associated with apoptosis, abnormal proliferation, immune tolerance and malignant transformation, and it also plays an important role in early embryonic development. Although the homologous deletion of GRIM-19 causes embryonic lethality in mice, the precise role of GRIM-19 in embryo implantation has not been elucidated. Here we show that GRIM-19 plays an important role in endometrial receptivity and embryo implantation. Day 1 to Day 6 pregnant mouse uteri were collected. Immunohistochemistry studies revealed the presence of GRIM-19 on the luminal epithelium and glandular epithelium throughout the implantation period in pregnant mice. The protein and mRNA levels of GRIM-19 were markedly decreased on Day 4 of pregnancy in pregnant mice, but there was no change in GRIM-19 levels in a group of pseudopregnant mice. Overexpression of GRIM-19 decreased the adhesion rate of RL95–2–BeWo co-cultured spheroids and increased apoptosis. Furthermore, STAT3 and IL-11 mRNA and protein levels were reduced by overexpressing GRIM-19, but protein and mRNA levels of TNF-α were increased. These findings indicate the involvement of GRIM-19 in the embryo implantation process by regulating adhesion, apoptosis and immune tolerance.

2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


2014 ◽  
Vol 306 (11) ◽  
pp. F1335-F1347 ◽  
Author(s):  
Keisuke Omote ◽  
Tomohito Gohda ◽  
Maki Murakoshi ◽  
Yu Sasaki ◽  
Saiko Kazuno ◽  
...  

Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-Ay mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-Ay mice were significantly decreased compared with untreated KK-Ay mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.


Reproduction ◽  
2009 ◽  
Vol 138 (2) ◽  
pp. 351-356 ◽  
Author(s):  
Xuemei Chen ◽  
Junlin He ◽  
Yubin Ding ◽  
Lan Zeng ◽  
Rufei Gao ◽  
...  

Mammalian target of rapamycin (MTOR) is a protein kinase that plays a central role in cell growth and proliferation. It is a part of the signaling network transmitting growth factor signaling to translational control. Previous studies have shown that MTOR is involved in embryo implantation, but its expression in the uterus and its role in implantation are unclear. Here, we have investigated the expression and role of MTOR in mouse uterus during early pregnancy. RT-FQ PCR showed that the mRNA levels of Mtor in endometria of pregnant mice were higher than those of nonpregnant mice. The mRNA levels in the pregnant mice gradually increased from D3 of pregnancy, reached maximum on D5, and then declined afterward. In situ hybridization and immunohistochemical analysis showed that the mRNA and protein of MTOR were mainly located in stromal cells. The levels of the expressed MTOR protein correlate with those of mRNA. The number of implantation sites was greatly decreased by the intrauterine injection with rapamycin in the early morning of D4 of the pregnancy. These findings suggest that MTOR may play an important role in embryo implantation in mice.


2011 ◽  
Vol 286 (22) ◽  
pp. 19297-19310 ◽  
Author(s):  
Nicolette J. D. Verhoog ◽  
Andrea Du Toit ◽  
Chanel Avenant ◽  
Janet P. Hapgood

TNFα signaling and cytokine levels play a crucial role in cervical immunity and the host response to infections. We investigated the role of liganded and unliganded glucocorticoid receptor (GR) in IL-6 and IL-8 gene regulation in response to TNFα in the End1/E6E7 immortalized human endocervical epithelial cell line. In the absence of glucocorticoids, both decreasing GR protein levels by an siRNA strategy and results with the GR antagonist RU486 suggest a role for the unliganded GR in reduction of TNFα-induced IL-6 and IL-8 mRNA levels in End1/E6E7 cells. Moreover, GR-dependent repression of endogenous IL-6 mRNA as well as a minimal IL-6 promoter-reporter gene is also demonstrated in COS-1 cells in the absence of GR ligand, suggesting a transcriptional mechanism that is not cell-specific. TNFα induced recruitment of both the unliganded GR and GR-interacting protein type 1 (GRIP-1) to the IL-6 promoter. This, together with GRIP-1 overexpression studies, suggests a function for GRIP-1 as a GR co-repressor in this context. TNFα was shown to induce phosphorylation of the unliganded human GR at Ser-226 but not Ser-211, unlike dexamethasone, which induced hyperphosphorylation at both serine residues. Ser-226 is shown to be required for the ligand-independent GR-mediated repression of IL-6 in response to TNFα. Taken together, these results support a model whereby the unliganded GR attenuates TNFα-stimulated IL-6 transcription by a mechanism involving selective phosphorylation and recruitment of the unliganded GR and GRIP-1 to the IL-6 promoter. These findings suggest the presence of a novel autoregulatory mechanism that may prevent overproduction of IL-6 in the endocervix, possibly protecting against negative effects of excessive inflammation.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jianwei Zhang ◽  
Lei Han ◽  
Feng Chen

Abstract Background Let-7a-5p is demonstrated to be a tumor inhibitor in nasopharyngeal carcinoma. However, the role of let-7a-5p in chronic rhinosinusitis with nasal polyps (CRSwNP) has not been reported. This study is designed to determine the pattern of expression and role of let-7a-5p in CRSwNP. Methods The expression level of let-7a-5p, TNF-α, IL-1β, and IL-6 in CRSwNP tissues and cells were detected by RT-qPCR. Western blot assay was carried out to measure the protein expression of the Ras-MAPK pathway. Dual luciferase reporter assay and RNA pull-down assay were used to explore the relationship between let-7a-5p and IL-6. Results Let-7a-5p was significantly downregulated in CRSwNP tissues and cells. Moreover, the mRNA expression of TNF-α, IL-1β and IL-6 was increased in CRSwNP tissues, while let-7a-5p mimic inhibited the expression of TNF-α, IL-1β and IL-6. Besides that, let-7a-5p was negatively correlated with TNF-α, IL-1β and IL-6 in CRSwNP tissues. In our study, IL-6 was found to be a target gene of let-7a-5p. Additionally, let-7-5p mimic obviously reduced the protein levels of Ras, p-Raf1, p-MEK1 and p-ERK1/2, while IL-6 overexpression destroyed the inhibitory effect of let-7a-5p on the Ras-MAPK pathway in CRSwNP. Conclusion We demonstrated that let-7a-5p/IL-6 interaction regulated the inflammatory response through the Ras-MAPK pathway in CRSwNP.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ming Liu ◽  
Zikun Xie ◽  
Guang Sun ◽  
Liujun Chen ◽  
Dake Qi ◽  
...  

Abstract Background Osteoarthritis (OA) is the most prevalent form of arthritis and the major cause of disability and overall diminution of quality of life in the elderly population. Currently there is no cure for OA, partly due to the large gaps in our understanding of its underlying molecular and cellular mechanisms. Macrophage migration inhibitory factor (MIF) is a procytokine that mediates pleiotropic inflammatory effects in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, data on the role of MIF in OA is limited with conflicting results. We undertook this study to investigate the role of MIF in OA by examining MIF genotype, mRNA expression, and protein levels in the Newfoundland Osteoarthritis Study. Methods One hundred nineteen end-stage knee/hip OA patients, 16 RA patients, and 113 healthy controls were included in the study. Two polymorphisms in the MIF gene, rs755622, and -794 CATT5-8, were genotyped using polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) and PCR followed by automated capillary electrophoresis, respectively. MIF mRNA levels in articular cartilage and subchondral bone were measured by quantitative polymerase chain reaction. Plasma concentrations of MIF, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) were measured by enzyme-linked immunosorbent assay. Results rs755622 and -794 CATT5-8 genotypes were not associated with MIF mRNA or protein levels or OA (all p ≥ 0.19). MIF mRNA level in cartilage was lower in OA patients than in controls (p = 0.028) and RA patients (p = 0.004), while the levels in bone were comparable between OA patients and controls (p = 0.165). MIF protein level in plasma was lower in OA patients than in controls (p = 3.01 × 10−10), while the levels of TNF-α, IL-6 and IL-1β in plasma were all significantly higher in OA patients than in controls (all p ≤ 0.0007). Multivariable logistic regression showed lower MIF and higher IL-1β protein levels in plasma were independently associated with OA (OR per SD increase = 0.10 and 8.08; 95% CI = 0.04–0.19 and 4.42–16.82, respectively), but TNF-α and IL-6 became non-significant. Conclusions Reduced MIF mRNA and protein expression in OA patients suggested MIF might have a protective role in OA and could serve as a biomarker to differentiate OA from other joint disorders.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Akira Nishiyama ◽  
Juan Wang ◽  
Shinichi Yachida ◽  
Genevieve Nguyen ◽  
Takuo Hirose ◽  
...  

(Pro)renin receptor ((P)RR) is a component of the Wnt receptor complex (Science, 2010). We have recently demonstrated that (P)RR plays an important role in the tumorigenesis of pancreatic ductal adenocarcinoma via the activation of Wnt/β-catenin signaling pathway (Shibayama et al. Sci Rep. 2015). Since the patients with colon cancer often show aberrantly activated Wnt/β-catenin-dependent signaling pathway by the mutations of its components, we investigated the possible role of (P)RR and Wnt/β-catenin signaling pathway in carcinogenesis of colon cancer. Real-time PCR was used for measuring mRNA levels of (P)RR. Protein levels of (P)RR was determined by Western blotting and immunohistochemistry. Activated β-catenin levels were determined by Western blotting. Cell proliferative ability was evaluated by counting the cell number in cultured colon cancer cell lines, HCT116 and DLD-1 cells. As compared to normal colon tissues (n=6), mRNA and protein levels of (P)RR were increased by 2.6- and 2.2-fold, respectively, in colon cancer tissues (n=9), which were associated with increased activated β-catenin levels (by 2.8-fold, P<0.05). However, plasma soluble (P)RR levels were not changed in patients with colon cancer (n=9). (P)RR and activated β-catenin levels were also increased in HCT116 (by 2.2- and 2.7-fold, n=5, respectively) and DLD-1 cells (by 1.9- and 2.8-fold, n=5, respectively). In these cells, inhibiting (P)RR with an siRNA attenuated the activity of β-catenin and reduced the proliferative abilities (n=5, P<0.05, respectively). These data suggest that (P)RR contributes to the tumorigenesis of colon cancer through the activation of Wnt/β-catenin signaling pathway.


2012 ◽  
Vol 24 (3) ◽  
pp. 517 ◽  
Author(s):  
U. Doyle ◽  
N. Sampson ◽  
C. Zenzmaier ◽  
P. Schwärzler ◽  
P. Berger

In preparation for embryo implantation, endometrial stromal cells (ESC) undergo differentiation, termed decidualisation. Enhancing endometrial decidualisation may overcome reduced endometrial receptivity, a major limiting factor in natural and assisted reproduction. To determine whether seminal plasma (SP) influences decidualisation, primary human ESC were treated with progesterone (P4, 50 ng mL–1) in the presence or absence of dialysed SP (0.5%) for 24 h or for up to 27 days to investigate immediate early effects or the effects of prolonged exposure, respectively. Combined SP and P4 treatment induced ESC morphological differentiation. Relative to control, P4 alone, and SP alone combined treatment with SP and P4 for 27 days significantly upregulated mRNA levels of the decidua-specific markers prolactin (PRL) and insulin-like growth factor binding protein 1 (IGFBP1). Consistently, PRL protein secretion was significantly increased over the course of 27 days combined SP and P4 treatment relative to control, P4 alone and SP alone. Likewise, IGFBP1 secretion was significantly greater relative to control and P4 alone over the course of 27 days. Thus, SP enhances and accelerates P4-mediated decidualisation of human ESC and may enhance endometrial receptivity.


2020 ◽  
Vol 102 (6) ◽  
pp. 1213-1224 ◽  
Author(s):  
Yingjie Wu ◽  
Haoran Li ◽  
Yinghe Qin

Abstract S100A4 has been suggested to be a critical regulator of tumor metastasis and is implicated in the progression of inflammation. The aim of this study is to investigate the expression and possible role of S100A4 in epididymitis. Using a mouse model of epididymitis induced by the injection of lipopolysaccharide (LPS) in the deferent duct, we found that LPS administration induced an upregulation of S100a4 transcription (P &lt; 0.05) and a recruitment of S100A4 positive cells in the epididymal interstitium of wild type (WT) mice. Co-immunofluorescence showed that S100A4 was mainly expressed by granulocytes, CD4 lymphocytes, and macrophages. Deficiency of S100A4 reduced epididymal pathological reaction and the mRNA levels of the pro-inflammatory cytokines IL-1β and TNF-α (P &lt; 0.01), suggesting that S100A4 promotes the progression of epididymitis. Furthermore, S100A4 deficiency alleviated the decline of sperm motility and rectified the abnormal expression of sperm membrane protein AMAD3, which suggested that in the progression of epididymitis, S100A4 aggravates the damage to sperm vitality. In addition, both Ki-67 marked cell proliferation and transferase-mediated dUTP-biotin nick end labeling detected cell apoptosis were reduced in S100a4−/− mice compared with WT mice after LPS treatment, indicating that S100A4 promotes both cell proliferation and cell apoptosis in epididymitis. Overall, these results demonstrate that S100A4 promotes the progression of LPS-induced epididymitis and facilitates a decline in sperm vitality, and its function may be related to the process of cell proliferation and apoptosis during inflammation.


2020 ◽  
Vol 26 (6) ◽  
pp. 505-513
Author(s):  
Yun-Qiu Li ◽  
Yu Zhong ◽  
Xu-Ping Xiao ◽  
Dan-Dan Li ◽  
Zheng Zhou ◽  
...  

Allergic rhinitis (AR) is a nasal mucosal inflammatory disease mediated by environmental allergens. At present, the relationship between the IL-33/ST2 axis, ERK1/2 pathway and AR progression needs further exploration. In our study, an AR model was constructed in vitro by treating HNEpC cells with Der p1. qRT-PCR was applied to assess the mRNA levels of IL-33, ST2, TNF-α, IL-6, and IL-8. Western blotting was used to measure the protein levels of IL-33, ST2, and the downstream proteins p-ERK1/2, ERK1/2, p-RSK, and RSK. IL-6, IL-8, IL-33, and TNF-α protein levels in cell supernatants were evaluated by ELISA. Flow cytometry was performed to check cell apoptosis of HNEpC in the presence or absence of Der p1. Our results indicate that the relative levels of IL-33, ST2, TNF-α, IL-6, and IL-8 were increased significantly in the AR model group. The above effects were notably reversed after transfection with shIL-33 or shST2. IL-33 stimulation further resulted in the increase in both ST2 and inflammation-associated cytokines, and these effects were restored after shST2 treatment. Also, the levels of inflammatory factors induced by IL-33 stimulation or ST2 overexpression were reversed after applying an ERK1/2 pathway blocker. In conclusion, IL-33/ST2 mediated inflammation of nasal mucosal epithelial cells by inducing the ERK1/2 pathway.


Sign in / Sign up

Export Citation Format

Share Document