scholarly journals Controlled molecular self-assembly of complex three-dimensional structures in soft materials

2017 ◽  
Vol 115 (1) ◽  
pp. 70-74 ◽  
Author(s):  
Changjin Huang ◽  
David Quinn ◽  
Subra Suresh ◽  
K. Jimmy Hsia

Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications.

2016 ◽  
Vol 2 (6) ◽  
pp. e1600417 ◽  
Author(s):  
William S. Y. Wong ◽  
Minfei Li ◽  
David R. Nisbet ◽  
Vincent S. J. Craig ◽  
Zuankai Wang ◽  
...  

One of the innate fundamentals of living systems is their ability to respond toward distinct stimuli by various self-organization behaviors. Despite extensive progress, the engineering of spontaneous motion in man-made inorganic materials still lacks the directionality and scale observed in nature. We report the directional self-organization of soft materials into three-dimensional geometries by the rapid propagation of a folding stimulus along a predetermined path. We engineer a unique Janus bilayer architecture with superior chemical and mechanical properties that enables the efficient transformation of surface energy into directional kinetic and elastic energies. This Janus bilayer can respond to pinpoint water stimuli by a rapid, several-centimeters-long self-assembly that is reminiscent of the Mimosa pudica’s leaflet folding. The Janus bilayers also shuttle water at flow rates up to two orders of magnitude higher than traditional wicking-based devices, reaching velocities of 8 cm/s and flow rates of 4.7 μl/s. This self-organization regime enables the ease of fabricating curved, bent, and split flexible channels with lengths greater than 10 cm, demonstrating immense potential for microfluidics, biosensors, and water purification applications.


2016 ◽  
Vol 2 (8) ◽  
pp. e1600027 ◽  
Author(s):  
Han Wang ◽  
Honglou Zhen ◽  
Shilong Li ◽  
Youliang Jing ◽  
Gaoshan Huang ◽  
...  

Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 214
Author(s):  
Tomislav Gregorić ◽  
Janja Makarević ◽  
Zoran Štefanić ◽  
Mladen Žinić ◽  
Leo Frkanec

Controlling the polymerization of supramolecular self-assembly through external stimuli holds great potential for the development of responsive soft materials and manipulation at the nanoscale. Vinyl esters of bis(leu or val)fumaramide (1a and 2a) have been found to be gelators of various organic solvents and were applied in this investigation of the influence of organogelators’ self-assembly on solid-state polymerization induced by gamma and ultraviolet irradiation. Here, we report our investigation into the influences of self-assemblies of bis(amino acid vinyl ester)fumaramides on gamma-ray- and ultraviolet-induced polymerization. The gelator molecules self-assembled by non-covalent interactions, mainly through hydrogen bonds between the amide group (CONH) and the carboxyl group (COO), thus forming a gel network. NMR and FTIR spectroscopy were used to investigate and characterize supramolecular gels. TEM and SEM microscopy were used to investigate the morphology of gels and polymers. Morphology studies showed that the gels contained a filamentous structure of nanometer dimensions that was exhaustive in a three-dimensional network. The prepared derivatives contained reactive alkyl groups suitable for carrying out the polymerization reaction initiated by gamma or ultraviolet radiation in the supramolecular aggregates of selected gels. It was found that the polymerization reaction occurred only in the network of the gel and was dependent on the structure of aggregates or the proximity and orientation of double bonds in the gel network. Polymers were formed by the gels exposure to gamma and ultraviolet radiation in toluene, and water/DMF gels with transcripts of their gel structure into polymers. The polymeric material was able to immobilize various solvents by swelling. Furthermore, methyl esters of bis(leu and val)fumaramide (1b and 2b) were synthesized; these compounds showed no gelling properties, and the crystal structure of the valine derivative 2b was determined.


2015 ◽  
Vol 5 (2) ◽  
pp. 20140095 ◽  
Author(s):  
Satoru Okuda ◽  
Yasuhiro Inoue ◽  
Tadashi Watanabe ◽  
Taiji Adachi

During morphogenesis, three-dimensional (3D) multicellular structures emerge from biochemical and mechanical interplays among cells. In particular, by organizing their gradient within tissues, the diffusible signalling molecules play an essential role in producing the spatio-temporal patterns of cell status such as the differentiation states. Notably, this biochemical patterning can be dynamically coupled with multicellular deformations by signal-dependent cell activities such as contraction, adhesion, migration, proliferation and apoptosis. However, the mechanism by which these cellular activities mediate the interactions between multicellular deformations and patterning is still unknown. Herein, we propose a novel framework of a 3D vertex model to express molecular signalling among the mechanically deforming cells. By specifying a density of signalling molecules for each cell, we express their transport between neighbouring cells. By simulating signal-dependent epithelial growth, we found various types of tissue morphogenesis such as arrest, expansion, invagination and evagination. In the expansion phase, growth molecules were widely diffused with increasing tissue volume, which diluted the growth molecules in order to support the autonomous suppression of tissue growth. These results indicate that the proposed model successfully expresses 3D multicellular deformations dynamically coupled with biochemical patterning. We expect our proposed model to be a useful tool for predicting new phenomena emerging from mechanochemical coupling in multicellular morphogenesis.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 149
Author(s):  
Filippo Pinelli ◽  
Tommaso Nespoli ◽  
Filippo Rossi

Porous aerogels, formed by subjecting precursor hydrogels using a freeze-drying process, are certainly one of the most studied and synthetized soft materials, thanks to their important features such as elasticity, swelling behavior, softness, and micro and nanosized pores, which guarantee their applicability in various fields. Typically, these systems are synthetized working with natural or synthetic polymers, but in the last years great interest has been given to proper formulated aerogels able to combine polymeric structures with other moieties such as graphene or graphene oxide. This working strategy can be pivotal in many cases to tune important properties of the final system such as toughness, porosity, elasticity, electrical conductivity, or responsive behavior. In this work we propose the synthesis of chitosan graphene oxide aerogels obtained through self-assembly of graphene oxide sheets and chitosan chains. These three-dimensional systems were chemically characterized with IR and XRD technique and their inner structure was investigated through the scanning electron microscopy (SEM). Moreover, we mechanically characterized the material through dynamic mechanical analysis, showing the stability of these systems. Finally, the adsorption ability of these soft materials has been demonstrated using model molecules to simulate water contaminants showing the efficacy of those graphene-based systems even for the removal of anionic dyes. Complete removal of contaminants was obtained at low concentration of dyes in solution (100 mg/L), while with a higher amount of pollutant in the solution (350 mg/L) high sorption capacity (q > 200 mg/g) was observed.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


Author(s):  
Zening Lin ◽  
Tao Jiang ◽  
Jianzhong Shang

Abstract In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document