scholarly journals Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies

2021 ◽  
Vol 22 (14) ◽  
pp. 7536
Author(s):  
Inez Wens ◽  
Ibo Janssens ◽  
Judith Derdelinckx ◽  
Megha Meena ◽  
Barbara Willekens ◽  
...  

Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.

Author(s):  
Masoumeh Beheshti ◽  
Zahra Salehi ◽  
Roya Abolfazli ◽  
Hedayatolah Shirzad ◽  
Maryam Izad

Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system, in which proinflammatory cytokines play a critical role in the pathogenic formation of lesions. Caspase-1 is a cysteine protease that proteolytically cleaves precursors of interleukin (IL)-18 and IL-1β and turns them into their active forms. These inflammatory cytokines play an important role in the development of MS. The aim of the present study was the investigation of caspase-1 and its downstream products, IL-18 and IL-1β, in relapsing-remitting MS (RRMS) patients. In this study, we used an ELISA assay to measure serum and cellular caspase-1 and serum levels of IL-18 and IL-1β in RRMS patients in the relapse phase (n=23) and healthy age-and gender-matched controls (n=19). We observed that the caspase-1 level was significantly increased in the serum of MS patients compared to the healthy controls (p=0.03). Although caspase-1 concentration in the lysate of peripheral blood mononuclear cells (PBMCs) was higher than serum among patients and controls (p<0.001), no significant difference was found in cellular levels of caspase-1 between the two groups. There was no significant difference in serum levels of  IL-18 and IL-1β between patients and controls. In this study, we found an elevation of extracellular caspase-1, as a reflection of its intracellular level, in the serum of RRMS patients during the relapse phase. Therefore, it suggests being a suitable peripheral biomarker of disease activity in multiple sclerosis.


Biomedicines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 85 ◽  
Author(s):  
Domenico De Rasmo ◽  
Anna Ferretta ◽  
Silvia Russo ◽  
Maddalena Ruggieri ◽  
Piergiorgio Lasorella ◽  
...  

Multiple sclerosis (MS) is an autoimmune disease in which activated lymphocytes affect the central nervous system. Increase of reactive oxygen species (ROS), impairment of mitochondria-mediated apoptosis and mitochondrial alterations have been reported in peripheral lymphocytes of MS patients. Mitochondria-mediated apoptosis is regulated by several mechanisms and proteins. Among others, optic atrophy 1 (OPA1) protein plays a key role in the regulating mitochondrial dynamics, cristae architecture and release of pro-apoptotic factors. Very interesting, mutations in OPA1 gene, have been associated with multiple sclerosis-like disorder. We have analyzed OPA1 and some factors involved in its regulation. Fifteen patients with MS and fifteen healthy control subjects (HC) were enrolled into the study and peripheral blood mononuclear cells (PBMCs) were isolated. H2O2 level was measured spectrofluorimetrically, OPA1, PHB2, SIRT3, and OMA1 were analyzed by western blotting. Statistical analysis was performed using Student’s t-test. The results showed that PBMC of MS patients were characterized by a deregulation of OPA1 processing associated with increased H2O2 production, inactivation of OMA1 and increase of PHB2 protein level. The presented data suggest that the alteration of PHB2, OMA1, and OPA1 processing could be involved in resistance towards apoptosis. These molecular parameters could also be useful to assess disease activity.


2020 ◽  
Author(s):  
Galina Yurevna Zheleznyakova ◽  
Eliane Piket ◽  
Maria Needhamsen ◽  
Michael Hagemann-Jensen ◽  
Diana Ekman ◽  
...  

AbstractMultiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), is associated with dysregulation of microRNAs (miRNA). We here analyzed all classes of small non-coding RNAs (sncRNAs) in matching peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells and cell-free CSF from relapsing-remitting (RRMS, n=12 in relapse, n=11 in remission), secondary progressive (SPMS, n=6) MS patients and non-inflammatory and inflammatory neurological disease controls (NINDC, n=11; INDC, n=5). We show widespread changes in small nuclear, nucleolar, transfer RNAs and miRNAs. In CSF cells, 133/133 and 115/117 differentially expressed sncRNAs are increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65/67 differentially expressed PBMC sncRNAs are decreased in RRMS compared to NINDC. The striking contrast between periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the target organ.


2021 ◽  
Author(s):  
Zeinab Shirvani-Farsani ◽  
Mehrdad Behmanesh ◽  
Mohammad Ali Sahraian

Abstract Objective: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), depicted by lymphocytic infiltration and demyelination. MS is associated with the up-regulation of pro-inflammatory and down-regulation of anti-inflammatory cytokines. The purpose of this experimental study was to evaluate the expression level of TGF-β1, TGF-β 2, TGF-β-R1 and TGF-β-R2 mRNAs in peripheral blood mononuclear cells (PBMCs) from MS patients and healthy controls using Real-Time PCR. Results: Our findings indicated that the TGF-β-R1 expression level was 2.25 times higher in controls than MS patients. Also, a significant correlation between normalized expression of TGF-β-R1 and TGF-β1, or TGF-β2 was observed. Therefore, these genes could likely play an important role in the etiology of MS.


2021 ◽  
Vol 11 (8) ◽  
pp. 721
Author(s):  
Afshin Derakhshani ◽  
Zahra Asadzadeh ◽  
Hossein Safarpour ◽  
Patrizia Leone ◽  
Mahdi Abdoli Shadbad ◽  
...  

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that is characterized by inflammation which typically results in significant impairment in most patients. Immune checkpoints act as co-stimulatory and co-inhibitory molecules and play a fundamental role in keeping the equilibrium of the immune system. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and Programmed death-ligand 1 (PD-L1), as inhibitory immune checkpoints, participate in terminating the development of numerous autoimmune diseases, including MS. We assessed the CTLA-4 and PD-L1 gene expression in the different cell types of peripheral blood mononuclear cells of MS patients using single-cell RNA-seq data. Additionally, this study outlines how CTLA-4 and PD-L1 expression was altered in the PBMC samples of relapsing-remitting multiple sclerosis (RRMS) patients compared to the healthy group. Finally, it investigates the impact of various MS-related treatments in the CTLA-4 and PD-L1 expression to restrain autoreactive T cells and stop the development of MS autoimmunity.


Author(s):  
Samantha P. L. Law ◽  
Prudence N. Gatt ◽  
Stephen D. Schibeci ◽  
Fiona C. McKay ◽  
Steve Vucic ◽  
...  

AbstractAlthough genetic and epidemiological evidence indicates vitamin D insufficiency contributes to multiple sclerosis (MS), and serum levels of vitamin D increase on treatment with cholecalciferol, recent metanalyses indicate that this vitamin D form does not ameliorate disease. Genetic variation in genes regulating vitamin D, and regulated by vitamin D, affect MS risk. We evaluated if the expression of vitamin D responsive MS risk genes could be used to assess vitamin D response in immune cells. Peripheral blood mononuclear cells (PBMCs) were isolated from healthy controls and people with MS treated with dimethyl fumarate. We assayed changes in expression of vitamin D responsive MS risk (VDRMS) genes in response to treatment with 25 hydroxy vitamin D in the presence or absence of inflammatory stimuli. Expression of CYP24A1 and other VDRMS genes was significantly altered in PBMCs treated with vitamin D in the homeostatic and inflammatory models. Gene expression in MS samples had similar responses to controls, but lower initial expression of the risk genes. Vitamin D treatment abrogated these differences. Expression of CYP24A1 and other MS risk genes in blood immune cells indicate vitamin D response and could enable assessment of immunological response to vitamin D in clinical trials and on therapy.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10220 ◽  
Author(s):  
Silvia Pérez-Pérez ◽  
María Inmaculada Domínguez-Mozo ◽  
Aitana Alonso-Gómez ◽  
Silvia Medina ◽  
Noelia Villarrubia ◽  
...  

Background Gut microbiota has been related to multiple sclerosis (MS) etiopathogenesis. Short-chain fatty acids (SCFA) are compounds derived from microbial metabolism that have a role in gut-brain axis. Objectives To analyse SCFA levels in plasma of MS patients and healthy donors (HD), and the possible link between these levels and both clinical data and immune cell populations. Methods Ninety-five MS patients and 54 HD were recruited. Patients were selected according to their score in the Expanded Disability Status Scale (EDSS) (49 EDSS ≤ 1.5, 46 EDSS ≥ 5.0). SCFA were studied in plasma samples by liquid chromatography-mass spectrometry. Peripheral blood mononuclear cells were studied by flow cytometry. Gender, age, treatments, EDSS and Multiple Sclerosis Severity Score (MSSS) were evaluated at the recruitment. Results Plasma acetate levels were higher in patients than in HD (p = 0.003). Patients with EDSS ≥ 5.0 had higher acetate levels than those with EDSS≤ 1.5 (p = 0.029), and HD (p = 2.97e–4). Acetate levels correlated with EDSS (r = 0.387; p = 1.08e–4) and MSSS (r = 0.265; p = 0.011). In untreated MS patients, acetate levels correlated inversely with CD4+ naïve T cells (r =  − 0.550, p = 0.001) and directly with CD8+ IL-17+ cells (r = 0.557; p = 0.001). Conclusions Plasma acetate levels are higher in MS patients than in HD. In MS there exists a correlation between plasma acetate levels, EDSS and increased IL-17+ T cells. Future studies will elucidate the role of SCFA in the disease.


Sign in / Sign up

Export Citation Format

Share Document