scholarly journals The Membrane Anchor R7BP Controls the Proteolytic Stability of the Striatal Specific RGS Protein, RGS9-2

2006 ◽  
Vol 282 (7) ◽  
pp. 4772-4781 ◽  
Author(s):  
Garret R. Anderson ◽  
Arthur Semenov ◽  
Joseph H. Song ◽  
Kirill A. Martemyanov

A member of the RGS (regulators of G protein signaling) family, RGS9-2 is a critical regulator of G protein signaling pathways that control locomotion and reward signaling in the brain. RGS9-2 is specifically expressed in striatal neurons where it forms complexes with its newly discovered partner, R7BP (R7family binding protein). Interaction with R7BP is important for the subcellular targeting of RGS9-2, which in native neurons is found in plasma membrane and its specializations, postsynaptic densities. Here we report that R7BP plays an additional important role in determining proteolytic stability of RGS9-2. We have found that co-expression with R7BP dramatically elevates the levels of RGS9-2 and its constitutive subunit, Gβ5. Measurement of the RGS9-2 degradation kinetics in cells indicates that R7BP markedly reduces the rate of RGS9-2·Gβ5 proteolysis. Lentivirus-mediated RNA interference knockdown of the R7BP expression in native striatal neurons results in the corresponding decrease in RGS9-2 protein levels. Analysis of the molecular determinants that mediate R7BP/RGS9-2 binding to result in proteolytic protection have identified that the binding site for R7BP in RGS proteins is formed by pairing of the DEP (Disheveled, EGL-10, Pleckstrin) domain with the R7H (R7 homology), a domain of previously unknown function that interacts with four putative α-helices of the R7BP core. These findings provide a mechanism for the regulation of the RGS9 protein stability in the striatal neurons.

2009 ◽  
Vol 29 (11) ◽  
pp. 3033-3044 ◽  
Author(s):  
Garret R. Anderson ◽  
Rafael Lujan ◽  
Kirill A. Martemyanov

ABSTRACT Neurotransmitter signaling via G protein coupled receptors is crucially controlled by regulators of G protein signaling (RGS) proteins that shape the duration and extent of the cellular response. In the striatum, members of the R7 family of RGS proteins modulate signaling via D2 dopamine and μ-opioid receptors controlling reward processing and locomotor coordination. Recent findings have established that R7 RGS proteins function as macromolecular complexes with two subunits: type 5 G protein β (Gβ5) and R7 binding protein (R7BP). In this study, we report that the subunit compositions of these complexes in striatum undergo remodeling upon changes in neuronal activity. We found that under normal conditions two equally abundant striatal R7 RGS proteins, RGS9-2 and RGS7, are unequally coupled to the R7BP subunit, which is present in complex predominantly with RGS9-2 rather than with RGS7. Changes in the neuronal excitability or oxygenation status resulting in extracellular calcium entry, uncouples RGS9-2 from R7BP, triggering its selective degradation. Concurrently, released R7BP binds to mainly intracellular RGS7 and recruits it to the plasma membrane and the postsynaptic density. These observations introduce activity-dependent remodeling of R7 RGS complexes as a new molecular plasticity mechanism in striatal neurons and suggest a general model for achieving rapid posttranslational subunit rearrangement in multisubunit complexes.


2016 ◽  
Vol 216 (2) ◽  
pp. 562-575 ◽  
Author(s):  
Dieter Hackenberg ◽  
Michael R. McKain ◽  
Soon Goo Lee ◽  
Swarup Roy Choudhury ◽  
Tyler McCann ◽  
...  

2000 ◽  
Vol 14 (16) ◽  
pp. 2003-2014 ◽  
Author(s):  
Meng-Qiu Dong ◽  
Daniel Chase ◽  
Georgia A. Patikoglou ◽  
Michael R. Koelle

Regulators of G protein signaling (RGS proteins) inhibit heterotrimeric G protein signaling by activating G protein GTPase activity. Many mammalian RGS proteins are expressed in the brain and can act in vitro on the neural G protein Go, but the biological purpose of this multiplicity of regulators is not clear. We have analyzed all 13 RGS genes in Caenorhabditis elegans and found that three of them influence the aspect of egg-laying behavior controlled by Go signaling. A previously studied RGS protein, EGL-10, affects egg laying under all conditions tested. The other two RGS proteins, RGS-1 and RGS-2, act as Go GTPase activators in vitro but, unlike EGL-10, they do not strongly affect egg laying when worms are allowed to feed constantly. However, rgs-1; rgs-2double mutants fail to rapidly induce egg-laying behavior when refed after starvation. Thus EGL-10 sets baseline levels of signaling, while RGS-1 and RGS-2 appear to redundantly alter signaling to cause appropriate behavioral responses to food.


2010 ◽  
Vol 21 (2) ◽  
pp. 232-243 ◽  
Author(s):  
Morwenna Y. Porter ◽  
Michael R. Koelle

Regulator of G protein signaling (RGS) proteins inhibit G protein signaling by activating Gα GTPase activity, but the mechanisms that regulate RGS activity are not well understood. The mammalian R7 binding protein (R7BP) can interact with all members of the R7 family of RGS proteins, and palmitoylation of R7BP can target R7 RGS proteins to the plasma membrane in cultured cells. However, whether endogenous R7 RGS proteins in neurons require R7BP or membrane localization for function remains unclear. We have identified and knocked out the only apparent R7BP homolog in Caenorhabditis elegans, RSBP-1. Genetic studies show that loss of RSBP-1 phenocopies loss of the R7 RGS protein EAT-16, but does not disrupt function of the related R7 RGS protein EGL-10. Biochemical analyses find that EAT-16 coimmunoprecipitates with RSBP-1 and is predominantly plasma membrane-associated, whereas EGL-10 does not coimmunoprecipitate with RSBP-1 and is not predominantly membrane-associated. Mutating the conserved membrane-targeting sequence in RSBP-1 disrupts both the membrane association and function of EAT-16, demonstrating that membrane targeting by RSBP-1 is essential for EAT-16 activity. Our analysis of endogenous R7 RGS proteins in C. elegans neurons reveals key differences in the functional requirements for membrane targeting between members of this protein family.


2020 ◽  
Vol 11 (1) ◽  
pp. 241-250
Author(s):  
Zhenyu Li ◽  
Guangqian Ding ◽  
Yudi Wang ◽  
Zelong Zheng ◽  
Jianping Lv

AbstractTranscription factor EB (TFEB)-based gene therapy is a promising therapeutic strategy in treating neurodegenerative diseases by promoting autophagy/lysosome-mediated degradation and clearance of misfolded proteins that contribute to the pathogenesis of these diseases. However, recent findings have shown that TFEB has proinflammatory properties, raising the safety concerns about its clinical application. To investigate whether TFEB induces significant inflammatory responses in the brain, male C57BL/6 mice were injected with phosphate-buffered saline (PBS), adeno-associated virus serotype 8 (AAV8) vectors overexpressing mouse TFEB (pAAV8-CMV-mTFEB), or AAV8 vectors expressing green fluorescent proteins (GFPs) in the barrel cortex. The brain tissue samples were collected at 2 months after injection. Western blotting and immunofluorescence staining showed that mTFEB protein levels were significantly increased in the brain tissue samples of mice injected with mTFEB-overexpressing vectors compared with those injected with PBS or GFP-overexpressing vectors. pAAV8-CMV-mTFEB injection resulted in significant elevations in the mRNA and protein levels of lysosomal biogenesis indicators in the brain tissue samples. No significant changes were observed in the expressions of GFAP, Iba1, and proinflammation mediators in the pAAV8-CMV-mTFEB-injected brain compared with those in the control groups. Collectively, our results suggest that AAV8 successfully mediates mTFEB overexpression in the mouse brain without inducing apparent local inflammation, supporting the safety of TFEB-based gene therapy in treating neurodegenerative diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aya Mikdache ◽  
Marie-José Boueid ◽  
Lorijn van der Spek ◽  
Emilie Lesport ◽  
Brigitte Delespierre ◽  
...  

AbstractThe Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Yeon Ho Yoo ◽  
Dae Won Kim ◽  
Bai Hui Chen ◽  
Hyejin Sim ◽  
Bora Kim ◽  
...  

Abstract Background Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. Results Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. Conclusions Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Hetal Mistry ◽  
Madeline Levy ◽  
Meaghan Roy-O'Reilly ◽  
Louise McCullough

Background and Purpose: Orosomucoid-1 (ORM-1) is an abundant protein with important roles in inflammation and immunosuppression. We utilized RNA sequencing to measure mRNA levels in human ischemic stroke patients, with confirmation by serum ORM-1 protein measurements. A mouse model of ischemic stroke was then used to examine post-stroke changes in ORM-1 within the brain itself. Hypothesis: We tested the hypothesis that ORM-1 levels increase following ischemic stroke, with sex differences in protein dynamics over time. Methods: RNA sequencing was performed on whole blood from ischemic stroke patients (n=23) and controls (n=12), with Benjamini-Hochberg correction for multiple testing. Enzyme-linked immunosorbent assay was performed on serum from ischemic stroke patients (n=28) and controls (n=8), with analysis by T-test. For brain analysis, mice (n=14) were subjected to a 90-minute middle cerebral artery occlusion (MCAO) surgery and sacrificed 6 or 24 hours after stroke. Control mice underwent parallel “sham” surgery without occlusion. Western blotting was used to detect ORM-1 protein levels in whole brain, with analysis by two-way ANOVA. Results: RNA sequencing showed a 2.8-fold increase in human ORM-1 at 24 hours post-stroke (q=.0029), an increase also seen in serum ORM-1 protein levels (p=.011). Western blot analysis of mouse brain revealed that glycosylated (p=0.0003) and naive (p=0.0333) forms of ORM-1 were higher in female mice compared to males 6 hours post-stroke. Interestingly, ORM-1 levels were higher in the brains of stroke mice at 6 hours (p=.0483), while at 24 hours ORM-1 levels in stroke mice were lower than their sham counterparts (p=.0212). In both human and mouse data, no sex differences were seen in ORM-1 levels in the brain or periphery at 24 hours post-stroke. Conclusion: In conclusion, ORM-1 is a sexually dimorphic protein involved in the early (<24 hour) response to ischemic stroke. This research serves as an initial step in determining the mechanism of ORM-1 in the ischemic stroke response and its potential as a future therapeutic target for both sexes.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Rong Xie ◽  
Michelle Cheng ◽  
Mei Li ◽  
Robert Sapolsky ◽  
Heng Zhao

Background and Objective: Akt is a serine-threonine kinase that plays critical role in promoting cell survival. Akt consists of three isoforms (Akt1, 2, 3), with Akt3 predominantly expressed in the brain. Although Akt pathway has been shown to mediate neuronal survival in cerebral ischemic injury, it is unclear how these Akt isoforms contribute to neuronal protection, and whether exogenous Akt can protect the brain against ischemic injury or not. In this study, we over-expressed Akt isoforms and its downstream signaling proteins such as FKHR and PRAS40 to investigate the role of the Akt pathway along with its potential relationship with the mTOR pathway in stroke. Methods: Sprauge Dawley rats (250∼280g) were used for all studies. A lentiviral vector consists of a CMV promoter driving IRES-eGFP was used to clone an active Akt 1 and 3 (cAKt 1 and 3), dominant-negative Akt (AktDN), active FKHR (AAA FKHR), and PRAS40. Lentivirus expressing these genes were added to primary mixed cortical cultures for two days prior to oxygen glucose deprivation (OGD) (MOI=1:5). Neuronal survival was measured by LDH release. Lentivirus were stereotaxically injected into the cortex, and rats were subjected to focal ischemia induced by distal MCA occlusion combined with bilateral CCA occlusion. Western blotting and immunofluorescent confocal microscopy were used to detect the expression of Akt isoforms and other proteins in both the Akt and mTOR pathways. Results: Western blotting analysis showed that both endogenous Akt1 and 3 proteins degraded as early as 1 h after stroke, while Akt2 protein remained unchanged until 24 h after stroke. In vitro studies showed that over-expression of both constitutively active cAkt1 and cAkt3 decreased LDH release after OGD, while AktDN worsened neuronal death ( P <0.05). In vivo over-expression of cAkt1, cAkt3 and PRAS40 reduced infarct size after stroke ( P <0.01). Gene transfer of cAkt1 and 3 also promoted protein levels of pAkt (phosphorylated Akt), pPRAS40, pFKHR, pPTEN, pmTOR, but not pGSK3β. Both in vitro and in vivo studies showed that over-expression of cAkt3 resulted in a stronger protection than cAkt1 ( P <0.05). Interestingly, cAkt3 gene transfer preserved both endogenous protein levels of Akt1 and 3, whereas cAkt1 gene transfer only preserved endogenous Akt1. Furthermore, cAkt3 promoted higher pmTOR levels than cAkt1. Treatment of rapamycin, an mTOR inhibitor, blocked the protective effects of both cAkt1 and cAkt3 both in vitro and in vivo. Conclusion: Lentiviral-mediated overexpression of cAkt3 confers stronger protection than that of cAkt1, by maintaining both endogenous Akt1 and Akt3, as well as promoting higher mTOR activities after stroke.


Sign in / Sign up

Export Citation Format

Share Document